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Abstract

The ability to manipulate light with materials has been a crucial component of tech-

nological progress, revolutionizing human existence in a countless number of ways. In

the past decade, a new paradigm has emerged for controlling light-matter interactions:

that of metamaterials. Unprecedented advances in micromanufacturing and compu-

tational techniques have allowed researchers to shape the electromagnetic response

functions of materials by structuring them on the scale smaller than the wavelength

of light. Optical characteristics thereby attained can transcend anything found in na-

ture, leading to a host of unconventional and, potentially, technologically important

phenomena. These include negative refraction, diffraction-free imaging, and cloaking.

In the present dissertation, we develop the subject of non-magnetic optical meta-

materials. We show that many phenomena that were originally thought to require

control over the magnetic response can be found in strongly anisotropic dielectrics

where one of its principal components becomes negative. We discuss the design of

such a response in artificial and natural materials and show that these structures often

offer simpler manufacturing and lower losses compared to traditional metamaterial

designs. At the same time, they show many unconventional optical properties owing

to the unique form of the photonic density of states. We explain the implications of

this phenomenon for electromagnetic wave propagation, and describe several devices

enabled by such materials with numerous prospective applications in light guiding

and confinement, imaging, control of dipole emitters, and optical detection.
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Chapter 1

Introduction

1.1 Why metamaterials?

The art and science of optics is centered upon our ability to control the dielectric

response of materials, thereby directing the flow of light. From the stained-glass

windows of Gothic cathedrals to modern LCD projectors, from Galileo’s telescope

to modern optical communication systems, devices made possible by skillful manip-

ulation of the refractive index have resulted in countless technological and cultural

breakthroughs. Our ability to build these devices has always been a combination

of both luck and ingenuity. Ingenuity is required to harness the power of electro-

magnetism and quantum mechanics for communications, imaging, machining, and a

myriad of other applications. Indeed, is it not a testament to human cleverness that

we are able to create strands of silica thinner than human hair and many kilometers

long, as well as all the hardware required to transmit and receive vast quantities of

information at terabit rates? And yet, the whole endeavor might have been moot if

we did not have the good luck of finding a material that only absorbs 0.2 dB/km (at

a wavelength of 1.55 µm) – and is amenable to being drawn into a fiber. Likewise,

in laser sources (particularly, before the advent of tunable semiconductor lasers), we
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have had little control over the emission wavelength, relying instead on the abundance

of various dielectric and semiconductor crystals we find in nature to provide us with

something that will produce light at the frequency of interest.

It has been realized long ago that while the optical response of naturally occurring

materials is, in principle, fixed, it is possible to alter this response by combining

and processing materials. By using composites it is possible to remove some of the

elements of luck from the spectral dependence of absorption and scattering and make

these phenomena more controllable. Stained glass windows, dating back to the middle

ages, serve as one of the earliest examples of this approach. Present-day advances

include complex heterostructures used in the fabrication of quantum cascade lasers,

as well as various photonic bandgap devices.

A little more than a decade ago, a new set of techniques for customizing material

response burst onto the scene, quickly captivating the minds of researchers, science

journalists, funding agencies, and prospective graduate students. In short order, these

techniques grew into a full-fledged field under the name of metamaterials research.

The term metamaterials, without a formal definition, first appears in a paper by

Smith et al. [1] which presented the first realization of a composite medium with

simultaneously negative permeability and permittivity. Because of this context, the

name metamaterial became firmly attached to the medium with {ε < 0, µ < 0}-

type response (also called a double negative, or DNG material). This definition later

broadened to include all media deriving their macroscopic optical properties from an

artificial subwavelength structure (note that such terminology specifically excludes

photonic crystals, which operate via Bragg reflection and must therefore be patterned

on the scale of optical wavelength). Operationally, however, metamaterials often

became a catch-all term, referring to all artificial media with unusual electromagnetic

properties.
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Regardless of the definition one chooses to use, the reason to study metamaterials

is clear: their development opens many new chapters in the fields of optical physics

and device engineering. It does so by greatly expanding parameter space accessible

for manipulating light, potentially paving the way for devices with unprecedented

capabilities – for example, imaging systems with subwavelength resolution, ultra-

small waveguides, ultra-efficient energy concentrators, and may others. A no less

significant reason to study metamaterials is simply the fact that the field provides a

playground to explore many fun topics in physics, both classical and contemporary.

Within the context of metamaterials one can reexamine and challenge mainstream

interpretations of diffraction theory [2, 3, 4], study fields in curved spacetime, and

contemplate black holes [5], quantum foams, and exotic metric signatures [6].

Let us now briefly review the recent history of metamaterials, and put in context

the body of work presented in this thesis.

1.2 History of metamaterials

The many techniques of manipulating materials through doping, patterning, and

creating structured composites has resulted in an impressive coverage of the elec-

tromagnetic parameter space. By the end of the 1990s, however, one area of that

parameter space remained thoroughly unexplored, namely, the {ε < 0, µ < 0} mate-

rials. The reasons for this are simple: first, negative magnetic response in the optical

domain does not occur in nature, and second, materials with these parameters were

not thought to have great technological importance. Nonetheless, it had been known

for several decades that this particular combination of material parameters has some

rather intriguing properties. Specifically, waves propagating through such medium

have negative phase velocity, and undergo negative refraction at an interface with

vacuum or an ordinary dielectric.
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Figure 1.1: Number of research articles on negative refraction and metamaterials from
1998 to 2010 (semi-log plot). (Source: ISI web of knowledge)

In the early 2000s – the early years of metamaterials research – negative refraction

had become the marquee property of these novel structures [2, 7, 8]. As a result, it may

seem to be a decidedly 21st century research area; however, we must recognize that the

origins of the subject date back many decades. Indeed, as a general wave propagation

phenomenon, negative refraction has been known since the early 1900s [9, 10]. It was

noted, in particular, that negative refraction naturally occurs at the interface with a

medium characterized by negative phase velocity. No such materials were known in

the electromagnetic domain, and so the early discussions involved only mechanical

oscillations. The first detailed treatment of negative refraction in electromagnetism

was provided by Veselago in 1968 [11]. He showed that to attain negative phase

velocity for EM waves, the material response must be of the form ε < 0, µ < 0. When

this condition is satisfied, the E, H and k vectors form a left-handed triplet. As a

result, the wave vector k and the Poynting vector S are oriented in opposite directions:

the system has negative phase velocity, the condition for negative refraction. Indeed,

negative phase velocity serves as a definition of negative index materials [12]. While

mechanical and radio frequency devices exhibiting such effective negative indices were

known at the time of Veselago’s writing, bulk materials with negative phase velocity

were not found in nature and not readily attainable [12].

4



Veselago’s discovery remained a forlorn electromagnetic curiosity until the year

2000, when interest in negative refraction and related phenomena experienced a ma-

jor surge, owing to major theoretical and experimental advances. On the theoretical

side, Pendry has proposed negative refractive media as a platform for subwavelength

resolution and aberration-free imaging [2]. In particular, Pendry showed that a slab

of Veselago’s “left-handed” material with ε = µ = −1 acts as a perfect lens: it

does not suffer from aberrations and is not subject to the diffraction limit. The

proposed “superlens” stimulated enormous interest in negative index materials, but

generated some initial controversy regarding their experimental realizability [13, 14].

This controversy was soon resolved by Smith and colleagues, who fabricated a mate-

rial with ε < 0, µ < 0 in the microwave band and explicitly demonstrated negative

refraction [15] These early studies sparked an explosive interest in metamaterials,

and for the first seven years, the number of research papers published in this area

grew exponentially, doubling approximately every ten months (Fig. 1.1). This is not

surprising, as many avenues of exploration laid wide open. First, of course, was the

problem of designing custom macroscopic electromagnetic response by controlling the

local response of micro- and nanostructured assemblies. In addition, many results in

the optical sciences, accumulated over centuries, could be adapted to accommodate

the newly available set of material parameters, sometimes leading to surprising new

results. Finally, the complete freedom to manipulate material response functions

created entirely new research directions, such as transformation optics and electro-

magnetic cloaking [16, 17, 18].

1.3 The quest for optical metamaterials

The most exciting prospective applications of metamaterials lie in the optical domain.

As a result, much effort has been directed into bringing their operating wavelengths
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ever lower, from centimeters in early 2000s [15], to the infrared range in 2005 [19, 20],

to visible in 2007, when negative refraction was demonstrated experimentally for

wavelengths as short as 772 nm [21].

Despite the tremendous advances in nanofabrication techniques that made those

experiments possible, manufacturing metamaterials that exhibit negative refraction

and related phenomena at such high frequencies presents many difficulties. The most

challenging aspect of the engineered electromagnetic response is the required negative

magnetic permeability. Negative permeability is a result of a resonant response by a

miniature conductive structure. For an effective negative permeability response, these

micro-resonators must reside in subwavelength unit cells. Thus, to attain negative

permeability for THz and higher frequencies, one must resort to lithographic meth-

ods in structuring the materials. For the optical frequencies, fully three-dimensional

subwavelength patterning is currently unfeasible.

Aside from the manufacturing difficulties, negative magnetic response presents

another significant challenge. The resonance in the real component of magnetic per-

meability which leads to negative values of µ is necessarily accompanied by a spike

in its imaginary component. This leads to high absorption at the operating frequen-

cies of magnetic negative index metamaterials, which can significantly impair device

performance [22].

In the quest to minimize losses, it became prudent to examine ways of obtaining

negative refraction without resorting to optical magnetism. Several groups showed

that negative refraction can arise for light in suitably designed photonic crystals [23,

24, 25, 26]. From the standpoint of losses, photonic crystals are generally superior to

magnetic metamaterials [26]. However, photonic bandgap devices present many of the

same fabrication challenges as magnetic metamaterials, especially for 3D structures.

While the characteristic features of photonic crystals are simpler and larger (and

6



hence easier to produce), the photonic band behavior is strongly sensitive to disorder,

necessitating high manufacturing precision.

1.4 Nonmagnetic metamaterials

In the present thesis, we address the issues of designing and studying metamateri-

als which do not exhibit optical magnetism. Although {µ < 0}-type response has

attracted the most attention in the early years of metamaterials research, it is only

one out of a multitude of available (and potentially controllable) material parame-

ters. Indeed, the most general formulation of linear electromagnetic material response

has 36 complex scalar constitutive relations [27] (18 of which come from the tensor

nature of ε and µ in crystals, and the other 18 characterize bianisotropic materials,

where electric fields can induce magnetic response and vice versa). Given this large

parameter space, it is not surprising that only certain parts of it had been thoroughly

explored by studying naturally-occurring materials. For example, uniaxial dielectric

anisotropy is a common phenomenon, mentioned in every introductory optics text-

book, and having important technological applications (e.g. angle-tuning of refractive

index in nonlinear devices). In studying uniaxial crystals, the usual assumption had

been that the dielectric tensor is positive definite. Even after the negative values

of ε and µ made the headlines, it took several years for researchers to start explor-

ing materials in which one of the components of the dielectric tensor had a negative

sign [28, 29, 30, 31]. Such materials were known as indefinite media [29] in some

early works. We prefer to call them hyperbolic media, or hyperbolic metamaterials

(HMMs) (this terminology comes from the fact that the wave vector surfaces in such

materials form hyperboloids).

Hyperbolic metamaterials have many appealing properties. First, they are vastly

simpler than typical magnetic metamaterials, and are therefore potentially more

7



amenable to bulk fabrication. For certain frequencies, materials with the desired

hyperbolic anisotropy can even be found in nature [30]. Additionally, hyperbolic ma-

terials are not sensitive to disorder and operate far from resonances, thus helping

minimize absorption losses.

HMMs were originally introduced as a way to achieve all-angle negative refraction

without resorting to optical magnetism. Since then, it has been shown that many

other effects originally studied in {ε < 0, µ < 0} metamaterials can be reproduced

in hyperbolic materials. These include negative phase velocity waveguides [32, 33],

negative Goos-Hänchen shift [34], and subwavelength focusing [4, 33]. But HMMs

turned out to have unique properties that put them in a metamaterial league of their

own. These properties originate in the unbounded nature of the hyperbolic wave

vector surfaces, which fundamentally changes certain aspects of light propagation in

HMMs and leads to an entirely new class of exciting devices.

The work described in this thesis is, for the most part, dedicated to exploring

the physics and applications of hyperbolic metamaterials. In Chapter 2 we describe

in detail the role of anisotropy in creating all-angle negative refraction and discuss

natural and artificial materials that can be used to demonstrate this phenomenon.

We proceed, in Chapter 3, to study the deep physical implication of the unbounded

wave vector hyperboloids: a diverging photonic density of states. This hypersingu-

larity can be exploited to create the hyperlens – a novel device that enables far-field

subwavelength-resolved imaging – and to control the lifetime of an emitter, thereby

enabling a sort of cavity-less Purcell effect. Chapter 4 describes further potential ap-

plications of HMMs, including negative phase velocity waveguides, slow light waveg-

uides, and planar imaging devices. Finally, in the last chapter, we broaden our

discussion of subwavelength imaging and describe nanophotonic devices which use

subwavelength structure for optical detection and fingerprinting significantly below

the diffraction limit.
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Chapter 2

Hyperbolic metamaterials

2.1 Introduction

The tremendous upsurge of interest in Veselago’s theory of left-handed materials in

the late 1990’s – early 2000’s was driven primarily by two factors. First was the

realization that artificial magnetism may be attainable at frequencies approaching

optical. The second factor was the theoretical discovery of new effects associated

with left-handed propagation, some of which could have a disruptive technological

impact (superlensing being the prime example) [2]. Much effort was concentrated

on achieving high-frequency magnetic response. This is a non-trivial task; in fact,

the conventional wisdom (supported by none other than Landau and Lifshitz in their

classic textbook) suggests that at optical frequencies we must always put µ = 1.

Indeed, for an isotropic medium, the magnetic susceptibility is defined (in cgs units)

as

µ = 1 + 4π
|M |
|H|

, (2.1)

with M ordinarily interpreted as magnetic moment per unit volume. It can be ar-

gued that at optical frequencies, this concept loses its meaning and we are justified

in ignoring M [35]. However, such arguments typically assume non-exotic natural
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materials with diamagnetic susceptibility. For metamaterial composites, especially

the ones involving high-permittivity inclusions, these conclusions need to be reex-

amined [36]. One finds that magnetic response at optical frequencies is, in fact, a

meaningful concepts in such materials. On the other hand, relating this response to

the usual macroscopic material parameter µ(ω) may be nontrivial.

In 2004, Agranovich et al. pointed out that wave propagation in media, both linear

and nonlinear, can be fully described without explicitly mentioning the magnetic

permeability µ or the field H . The only constitutive relation needed was

D = ε̃(ω,k)E, (2.2)

where the generalized dielectric tensor ε̃(ω,k) contains the effects due to bound cur-

rents that are normally associated with magnetic response. This description has a

one-to-one correspondence with the conventional treatment of waves in media, but

the resultant equations only contain the fields E,D, and H ; in addition, µ ap-

pears nowhere except, possibly, the definition of ε̃. This description necessarily forces

ε̃(ω,k) to be anisotropic and spatially dispersive [37]. Agranovich et al. were able to

use the generalized dielectric tensor to describe {ε < 0, µ < 0} materials at optical

frequencies, where the traditional physical meaning of µ(ω) becomes unclear. This

approach retains its power even when no magnetic dipole type response takes place

in the medium [38].

The notion that it is possible to formally substitute magnetic response of the

medium with a more complicated dielectric response stimulated further research.

In particular, it motivated Podolskiy and Narimanov to come up with an exam-

ple of a system that mimicked, mathematically, the dispersion relation of a Veselago

{ε < 0, µ < 0} medium by exploiting dielectric anisotropy. This was achieved by

considering a metallic waveguide with a uniaxial anisotropic core: the material re-
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sponse was different along the waveguide and perpendicular to it. This is a quasi-

two-dimensional system with the wave vector confined to the waveguide plane. It is

straightforward to show that the relation between this wave vector’s magnitude and

frequency is given by

|k| =
√
εν
ω

c
, (2.3)

where ν is a function of ε and waveguide parameters. For the TM modes, propagation

is possible for {ε, ν} < 0. Furthermore, it was shown that the phase and group

velocity have different signs and that if an interface were set up between some isotropic

dielectric and the uniaxial medium inside the waveguide, negative refraction would

arise [30].

This was not the only motivation that guided researchers towards considering

anisotropic effects. Around roughly the same time, several groups were working on

improving the performance of Pendry’s “poor man’s” superlens – a non-magnetic

metallic slab with ε < 0 which amplifies evanescent waves via plasmon coupling. Any

realistic device, however, suffers from significant losses. It turns out that these losses

can be decreased while retaining the superlens resolution by replacing the metallic

slab with a metal-dielectric stack [39, 40]. Such a configuration is, effectively, an

anisotropic uniaxial form-birefringent crystal.

Finally, based on simple geometrical arguments, several other groups realized that

negative permittivity in uniaxial crystals along the anisotropy axis leads to backwards

waves and negative refraction [28, 29, 31].

It became clear that a special kind of anisotropy, where one sign of the dielectric

tensor is negative, zero, or infinity, started to emerge as a solution to a diverse range

of problems in metamaterials research. This raises several natural questions: what

particular features make these materials so appealing, and how do we go about the

practicalities of obtaining them?
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In this chapter, we will examine the role of strongly anisotropic metamaterials

in enabling negative refraction and related phenomena. We will see that much can

be understood simply by examining the shape of isofrequency curves as a function

of wave vector components.1 Crucially, we will see that the hyperbolic form of the

dispersion relation is central to facilitating unconventional optical behavior. After

describing the various aspects of negative refraction and wave propagation enabled

by hyperbolic dispersion, we turn our attention to the realizability of the desired di-

electric response in natural or artificial materials. We finish by describing two specific

artificial metamaterial system with hyperbolic anisotropy that were studied experi-

mentally. The results of these experiments closely match theoretical predictions made

for hyperbolic metamaterials in the framework of the effective medium approximation.

2.2 Emergence of negative refraction from strong

anisotropy

For a plane wave with wave vector k, incident on some surface, translational invariance

demands that k‖, the component of k along the surface, be preserved for the refracted

wave. So long as the direction of the energy flow (given by the Poynting vector S)

and the direction of the wave vector k are the same, negative refraction cannot occur.

Thus, negative refraction is only possible in media where the unit vectors k̂ and Ŝ

do not coincide. More specifically, for the transmitted wave we must have S‖ < 0

when k‖ > 0 and vice versa. For a medium with negative phase velocity, Ŝ = −k̂

holds, and the condition S‖ < 0 and k‖ > 0 are then satisfied automatically. Material

parameters ε < 0, µ < 0 lead to exactly this scenario. More generally, however, we
1Since such plots are simply a representation of the dispersion relation, i.e. the ω(k) dependence,

we will most often use the term “dispersion” to characterize functional form of these isofrequency
curves (as opposed to e.g. spectral dependence of material response).
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may inquire what material parameters lead to negative refraction without requiring

negative phase velocity.

The simplest answer to this question comes from considering wave propagation in

anisotropic crystals and noting that the directions of S and k are, generally, differ-

ent. To see how this comes about, we consider plane wave propagation in a uniaxial

medium. Depending on polarization, the waves can be characterized as ordinary or

extraordinary. For extraordinary waves, the electric field vector has a non-vanishing

component along the optical axis, and therefore the different components of the elec-

tric field E experience different dielectric constants. Furthermore, the relationship

between E and D (the electric displacement vector) depends on the propagation di-

rection. Ordinary waves, on the other hand, are not affected by the anisotropy and

are of no special interest. For this reason, in the subsequent discussion we treat only

the extraordinary polarization.

Taking x̂ as the direction of the optical axis, we may characterize the extraordinary

wave in a uniaxial crystal by the dispersion relation[35]

k2
x

εz
+
k2
y,z

εx
=
ω2

c2
. (2.4)

For sufficiently weak absorption, the direction of the Poynting vector is identical

to the direction of the group velocity vector vg = ∇kω(k) [35]. This means that S

is normal to the isofrequency curves given by Eq. (2.4).

What does this imply for the relative angle between S and k? In the isotropic

case, the wave vector surfaces are spheres, and therefore S ∝ ∇kω(k) ∝ k, i.e. S

and k are collinear, as can be seen in Fig. 2.1(a). Consider now the situation in

Fig. 2.1(b), where εx 6= εz and εx,z > 0. The wave vector surfaces become ellipsoidal;

as a consequence, the angle between S and k is non-zero; its exact value depends on

the direction of propagation and the degree of anisotropy.
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Figure 2.1: Isofrequency curve and relative direction of the wave vector k and the
Poynting vector S for (a) isotropic material, (b) material with εx, εz > 0, (c) material
with εx < 0, εz > 0, (d) material with εx > 0, εz < 0.

Finally, we consider the cases shown in Fig. 2.1(c,d), where εx and εz are not only

non-equal but also possess different signs. This drastically changes the nature of the

dispersion relation in Eq. (2.4), which we can now write, explicitly, as

k2
x

εz
−
k2
y,z

|εx|
=
ω2

c2
(2.5a)

k2
y,z

εx
− k2

x

|εz|
=
ω2

c2
, (2.5b)

depending on which sign is taken to be negative.

For a material with negative transverse dielectric permittivity (εx < 0) and posi-

tive in-plane permittivity (εz > 0), Eq. (2.5a) describes a hyperbola with foci on the

kx axis. Constructing the vectors S and k, as before, we see that the signs of Sz and

kz are opposite for all admissible values of k.

This result can also be obtained by directly examining the expression for the

Poynting vector of the extraordinary (TM) wave. The magnetic field for the TM

wave is

H(r) = −H0e
ik·rŷ, (2.6)
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and using the familiar expressions ∇ ×H = −iωεE and S = 1
2
E(r) ×H∗(r), we

obtain

S =
H2

0

2ωε0


kx/εz

0

kz/εx

 . (2.7)

Evidently, if εx < 0, Sz is negative, i.e., opposite to the direction of the wave vector

component kz.

What about the dispersion relation of Eq. (2.5b)? It also describes a hyper-

bola, but with a different orientation. We illustrate this other type of hyperbola in

Fig. 2.1(d). As expected, the mathematical properties of this curve are nearly iden-

tical to the one in panel (c); the angle between the k and S vectors behaves in the

same manner. The major difference arises when we consider refraction at an inter-

face between a dielectric and a material exhibiting this kind of dispersion. Letting

kx be the normal to the interface, we can see that this configuration does not imply

negative refraction – but due to the conservation of energy flux, it implies negative

phase velocity in the hyperbolic medium. It is worth pointing out that the notion

of negative phase velocity in this situation arises due to the fact that the preferred

propagation direction in this system was chosen to be along the x axis (normal to

the interface). We will see in Chapter 4 a different situation, where due to a different

choice of system geometry and the “preferred” propagation direction, the negative

phase velocity phenomenon in uniaxial dielectrics is associated with the dispersion

relation of Fig. 2.1(c).

In Fig. 2.2 we compare refractive behavior originating from the different types of

dispersion relations. Panel (a) illustrates the usual refraction at a dielectric interface;

panel (b) shows the case of perfectly impedance-matched {ε < 0, µ < 0} medium.

Panels (c) and (d) show the two types of hyperbolic negative refraction corresponding

to the dispersion curves of Fig. 2.1(d) and (c) respectively. The large angle between
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Figure 2.2: The different of refractive behavior corresponding to different types of
materials: (a) the usual refraction at a dielectric interface; (b) negative refraction with
impedance-matched {ε < 0, µ < 0} medium; (c) {εx > 0, εz < 0} material: positive
refraction of the beam, negative refraction of the wavefronts; (d) {εx < 0, εz > 0}
material: negative refraction of the beam, positive refraction of the wavefronts.

Figure 2.3: (a) The ray diagram and (b) the electric field for the refraction of a light
beam at the boundary of air with an εx < 0, εz > 0 material (εz = 3, εx = −1.5). Note
negative refraction of the beam and the direction of the wavefronts. (c) The intensity
distribution of a beam propagating through a slab made of such material. Here, we
use a particular example of an artificial layered metamaterial (SiC/SiO2 stack) and
realistic losses are considered.

the phase fronts and the direction of energy flow can be clearly seen in the plots.

Furthermore, it can be seen that the {εx > 0, εz < 0} anisotropy leads to the positive

refraction of the beam, but the apparent negative refraction of the phase fronts.

Finally, in Fig. 2.3(c), we simulate the behavior of a strongly diverging beam im-

pinging on a slab with {εx < 0, εz > 0} anisotropy. Each spatial frequency Fourier

component of this beam undergoes negative refraction as described above [illustrated

schematically in panels (a) and (b)]. As a result, the material slab can function as a

planar lens – an application that was originally heralded for the {ε < 0, µ < 0} ma-
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terials. The system illustrated here corresponds to an artificial layered material (see

Sec. 2.3.2) made out of a SiC/SiO2 stack, with realistic losses used in the simulation.

Two other aspects of the ω(k) dependence need to be considered: first, we were

assuming that ∇kω(k) > 0. This determined the direction of the vector S (e.g.,

towards the inside of the hyperboloid sheets). This is the most common situation,

but this need not always be the case. We can imagine a dispersive medium where

increasing the frequency would shift the isofrequency contours towards lower values

of kx and kz. In this case, we would have to flip the direction of the S vector in the

diagrams of Fig. 2.1.

In addition, the interface between the media can be tilted with respect to the

principal axes of one or both dielectric tensors. This implies that it is possible to pick

a coordinate system x′z′ in which Sz′ < 0, kz′ > 0. If the material is cut such that x̂′

defines the surface normal, negative refraction occurs. This situation is illustrated in

Fig. 2.4(a). Note, however, that this arrangement, known as amphoteric refraction,

is only realizable for a finite range of k values, and, hence, a finite set of incidence

angles. Amphoteric refraction can be considered an intrinsic property of uniaxial

crystals, and has been demonstrated experimentally [41, 42].

Beyond geometric optics: aspects of wave propagation in hy-

perbolic materials

The hyperbolic dispersion relation in Eq. (2.5) has a profound impact not just on

refraction behavior at the interface, but also on the general properties of wave prop-

agation. Indeed, one crucial difference between the curves of Fig. 2.1(a,b) and

Fig. 2.1(c,d) is the fact that for the first two, corresponding to regular dielectrics,

the domain of allowed k values is restricted. On the contrary, for hyperbolic ma-

terials, this domain is unbounded. The consequences of this on wave propagation

can be immediately seen. Consider the propagation of a particular plane wave field
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(a) (b) (c)

Figure 2.4: Special cases of negative refraction at an interface with an anisotropic
medium: (a) amphoteric refraction; (b) channeling regime (|εx| � εz); (c) ENZ
configuration (|εx| � εz). Wave vectors components kx,z are given in units of ω/c.

harmonic, which we write as

E(r, t) = E0 exp [i(k · r − ωt)] = E0 exp [i(kxx+ kzz − ωt)], (2.8)

where for simplicity we set ky = 0. If we fix ω and kz, we can easily find kx from

Eq. (2.4):

kx =

√
εz
ω2

c2
− εz
εx
k2
z . (2.9)

When kz becomes too large (e.g. in the case of vacuum, when kz > ω/c), kx becomes

imaginary, and as a result the propagating wave in Eq. (2.8) decays exponentially

in the x direction. This, indeed, is the origin of the diffraction limit. The upper

bound that is set on the values of wave vector components determines the maximum

frequency of spatial oscillations of propagating fields. This, in turn, determines the

minimum length scale on which objects can be studied using electromagnetic wave

propagation. It can be shown that these considerations imply the conventional λ/2

diffraction limit [43].

The above argument changes dramatically when the signs of εx and εz differ in

Eq. (2.9). In this case, kx remains real for arbitrarily high values of kz — indeed, for
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almost all values of kz (kz < εx ω/c for the case εz < 0 is the only exception). This

suggests that in hyperbolic media the classical diffraction limit does not apply!

Another hyperbolic dispersion effect that is of particular interest in imaging appli-

cations involves directionality constraints on propagating radiation. Fig. 2.1(c) shows

that the allowed directions of the wave vector and the Poynting vector are restricted

by the asymptotes of the hyperbola. The locus of the allowed S vectors is a cone,

with the half-angle θc given by

tan θc =

√
|εx|
εz
. (2.10)

For values of k where the branches of the hyperbola lie close to the asymptotes, the

direction of the energy flow is perpendicular to the asymptotes, i.e. the refraction

angle is given by

cot θS =

√
|εx|
εz
. (2.11)

If we consider a large range of k values, it is easy to see that the refraction angle for

most of them would be very close to the asymptotic limit given by Eq. (2.11). If the

energy of the beam is distributed equally across many wave vector angles (or, more

generally, across many Fourier spatial frequency harmonics), as might be the case for

a point source, the angular distribution of energy flow is decidedly different: most

energy will be transported in a cone of half-angle θS given by Eq. (2.11). Indeed,

there are infinitely many wave vectors that are solutions of Eq. (2.5a), and they

all contribute to propagation in the same direction. This is in sharp contrast to the

behavior of isotropic dielectrics, where the power in a beam’s spatial frequencies might

get spread out over a narrower or broader spatial frequency range, but not shifted

towards some preferred direction. Such beam-like directional radiation patterns have

indeed been observed for sources embedded in strongly anisotropic plasmas [44, 45].
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In this context, it is interesting to consider two special cases of the hyperbolic

dispersion. First, suppose that the asymptotes of the hyperbola are parallel to the

interface between two media, which we take to be the z axis.2 This might be the case

in the limit |εx| � εz [Fig. 2.4(b)]. The energy refraction angle, then, is zero; all fields

that enter the device propagate in the direction normal to the interface. This allows

one to use multibeam interference effects to increase the coupling of energy into the

device. Such regime is known as channeling [46], and has been suggested for use in

sub-diffraction-limited imaging.

The second special case arises in anisotropic epsilon-near-zero (ENZ) materials,

e.g. εx ≈ 0 (notice that this is the opposite of the channeling limit). From Fig. 2.4(c)

we can see that this implies the energy for all but normal incidence starts flowing

in the lateral direction. Later in this chapter, we will discuss this phenomenon in

more detail and present experimental evidence that it can serve as a basis for narrow

angular filters.

2.3 Possible implementations

2.3.1 Natural anisotropy

As we are starting to see, the special nature of the εx < 0, εz > 0 systems leads to a

multitude of exotic effects. There arises a natural question: how can we elicit such a

response from physical materials?

Perhaps surprisingly, the εx < 0, εz > 0 behavior is observed in a number of

natural materials where structural anisotropy strongly affects the dielectric response.

Examples of such materials can be found in the infrared and THz spectral bands. For
2When comparing structures in k-space and in “real” space (r-space), we utilize the canonical

isomorphism induced between the two spaces by the plane waves of the form exp(ik · r) (or, more
precisely, by the inner product k · r). For instance, when we say that a line Lk in k-space is parallel
to a line Lr in r-space, we mean that a wave with wave vector k orthogonal to Lk has phase fronts
that are parallel to Lr.
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Figure 2.5: (A): The real (top panel) and the imaginary (bottom panel) parts of
the dielectric function of TGS; the monoclininc C2 axis is along the “perpendicu-
lar” (⊥) direction. (B): Same for sapphire; the crystallographic c axis is along the
“perpendicular” (⊥) direction. (C): Same for monocrystalline bismuth.

instance, in the far infrared/low THz domain, this behavior is exhibited by triglycine

sulfate (TGS), a compound widely used in fabricating infrared photodetectors. Spec-

troscopic studies of the crystal at low temperature have shown that phonon modes

polarized parallel to the crystal’s monoclinic C2 axis significantly differ in frequency

from phonons transverse to the axis. This results in a large anisotropy in the dielectric

tensor along these directions. In particular, dielectric response for the field polarized

along the C2 axis features a resonance at 268 µm, which is absent if the incident

field is polarized transverse to the C2 axis [47]. Dielectric function ε⊥ in the vicinity

of this resonance can be fitted with the Lorentz-Drude model [48], while ε⊥ in this

region can be taken approximately constant [31, 47]. (Here, ⊥ and ‖ are orientation

relative to the C2 axis.) Lorentz-Drude model parameters from Ref. [48] were used

to construct Fig. 2.5(a). As is evident from the figure, ε⊥ < 0, while ε‖ > 0 in the

region 250 ≤ λ ≤ 268 µm. Furthermore, the imaginary part of ε becomes small away

from the resonance, minimizing absorption.

Whereas the phonon anisotropy of TGS exists in the low-THz domain, for other

materials, it may occur in a different spectral band. In particular, the strong

anisotropy of the dielectric response of sapphire (Al2O3) is also due to excitation
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of different phonon modes (polarized either parallel or perpendicular to the c axis

of the rhombohedral structure), but occurs around 20 µm. Fig. 2.5(b) shows

experimentally-determined [49] ε‖ and ε⊥ as functions of frequency. As with TGS, a

region of ε⊥ < 0, ε‖ > 0 is evident in the experimental data. Note that the minimum

of the material absorption occurs in the frequency range of interest.

Anisotropic phonon excitations are not the only mechanism that can lead to strong

dielectric anisotropy. Bismuth, a Group V semimetal with rhombohedral lattice and

trigonal symmetry, exhibits such anisotropy due to a substantial difference in its

electron effective masses along different directions in the crystal.

In the frequency region of interest, the spectral dependence of the electric permit-

tivity of bismuth can be adequately described by the Drude model,

ε = εL

(
1−

ω2
pl

ω2 + iωτ−1

)
, (2.12)

with εL the lattice permittivity, ωpl = Ne2/εLmeff the plasma frequency, and τ the

relaxation time. These parameters are known from interferometric and reflectance

studies of Bi samples. In particular, plasma frequency of pure bismuth at 4 K was

measured to be 158 cm−1 for the incident E-field polarized perpendicular to the

trigonal axis, and 186 cm−1 for the field polarized parallel to the axis [50]. These

values are in agreement with other experiments [51, 52]. The lattice dielectric constant

εL for the field perpendicular to the trigonal axis was found to be 110±10 cm−1 [52],

in reasonable agreement with Ref. [51]. For polarization parallel to the trigonal axis,

εL=76 [53].

There can be substantial variation in the relaxation time τ depending on the purity

of the sample. We take τ=0.1 ns [52], however, this is a conservative estimate; for low

temperatures, relaxation times over an order of magnitude greater have been reported

as far back as 1975 [53]. Even with τ=0.1 ns, the typical ratio of imaginary and real

parts of the dielectric function in Bi is on the order of 0.1% in the frequency interval
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of interest, which enables many imaging and transmission applications [30]. It should

also be noted that high-quality single-crystal films as thin as 1 µm, with the trigonal

axis (C3) oriented perpendicular to the film plane, have been reported [54], thereby

essentially solving the technological issues in fabricating the proposed negative index

device.

Fig. 2.5(c) shows the behavior of real and imaginary components of ε for Bi based

on Eq. (2.12). The most prominent feature of these plots, the transition from ε > 0

to ε < 0, is determined by the highly anisotropic plasma frequency. This anisotropy

creates a window between λ = 53.7 µm and 63.2 µm where ε < 0 for the E-field along

the C3 axis, while ε > 0 for E transverse to C3. The existence of such 10 µm window

was confirmed by direct measurement [55].

2.3.2 Artificial nanostructured systems

For spectral domains where natural effects do not result in differing signs of the di-

electric tensor components, such anisotropy may be attained in metamaterials. To

satisfy the requirement εx < 0 and εz > 0, the metamaterials must combine plas-

monic or polar materials (with ε < 0) with conventional dielectrics in an appropriate

geometry.

The ε < 0 components of such nanocomposites may come from a variety of sources.

For instance, these negative permittivity response can be engineered artificially. One

approach involves strongly doping a semiconductor, thereby creating a plasmon res-

onance. Another possible technique to induce negative permittivity is engineering

quantum wells with appropriate intrasubband transitions. Negative permittivity is

also quite common in naturally occurring materials. In the visible spectrum, plas-

mon resonances result in ε < 0 for a number of metals. Silver is one example of

a relatively low-loss plasmonic material. At longer wavelengths, phonon resonances

can yield ε < 0, with losses typically lower than those in silver. One such low-loss
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material, well-suited for studying negative-index phenomena in the mid-IR, is silicon

carbide [56, 57], with ε < 0 between 10.3 and 11 µm. In what follows, we shall

often refer to the ε < 0 phases of nanocomposites as “plasmonic inclusions” or “metal-

lic inclusions”, keeping in mind that the actual material may be a metal, a doped

semiconductor, or a phonon-polaritonic dielectric.

The key to achieving a very strong bulk anisotropy that can lead to a hyperbolic

dispersion relation is to make sure the polarization response of the composite medium

varies significantly depending on the direction of the applied field. This can be done

by controlling the shape and/or the distribution of the metallic inclusions, thereby

introducing anisotropic subwavelength structure.3 Such structure can be created in

a number of different ways. The most common configurations for the plasmonic

inclusions are:

− a layered medium with alternative positive and negative permittivities in a

particular direction

− aligned nanowires

− metallic particles anisotropically distributed in a dielectric host.

We now proceed to describe the first two systems in greater detail. We will provide

the basic theoretical description and present the work done in collaboration with two

leading experimental groups.

2.3.2.1 Layered medium: strongly doped semiconductor implementation

A layered medium with alternating signs of permittivities [30, 56, 59] is, perhaps,

the simplest artificial arrangement that yields a hyperbolic dispersion relation. This
3We should note that the general concept of anisotropic subwavelength patterning in order to

achieve birefringence has existed for a number of years under the name of form birefringence [58].
However, the use of this approach to create materials with a hyperbolic dispersion relation and
unique optical properties is a new, previously unforeseen direction.
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(a) (b)

Figure 2.6: (a) Schematic representation of the planar metamaterial. (b) Dielectric
function of the layered heterostructure in the effective medium approximation assum-
ing doping levels n = 7.5× 10−18 cm−1. The {ε⊥ > 0, ε‖ < 0} anisotropy is apparent
between approximately 8.75 and 11.9 µm. Inset indicates the orientation of the dis-
persion relation hyperbola in that region. Note that for normal incidence this system
is expected to have little transmittance.

medium consists of a sequence of “dielectric” layers (ε1 > 0) and “conductive” layers

(ε2 < 0) [40]. The effective dielectric tensor of such a structure (with the volume

fraction of the conducting layers Nc) is given by [60]

εx =
ε1ε2

Nc ε1 + (1−Nc)ε2
(2.13)

εz = (1−Nc)ε1 +Nc ε2.

Provided that ε1 > 0 and ε2 < 0 in a certain frequency range, these equations lead to

a well-defined frequency interval with εx < 0, εz > 0 (the exact values of the interval

are determined from the dispersive characteristics of ε1 and ε2). Early research in

multilayer planar metamaterials was motivated by the desire to lower losses in a

plasmonic near-field superlens, in particular, Ag/SiO2 multilayer systems and their

imaging properties were actively investigated experimentally [61].

Planar layered systems can also be fabricated using epitaxial semiconductor

growth, with selective doping used to attain ε2 < 0 in the “metallic” regions. A

particular realization, composed of interleaved 80 nm layers of In0.53Ga0.47As and
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Al0.48In0.52As, was used by the Gmachl group to create the first experimental

demonstration of negative refraction in non-magnetic hyperbolic metamaterials [62].

The layers, approximately 8.1 µm thick, were grown by molecular beam epitaxy on

lattice-matched InP substrates; the InGaAs layers were heavily doped in order to

attain ε < 0 response below the plasma frequency. Several samples were studied,

with free electron density ranging from 3.4 × 10−18 cm−1 to 7.5 × 10−18 cm−1, and

corresponding plasma frequencies ranged from 13.1 to 8.8 µm.

In addition to all-angle negative refraction, this system is predicted to have several

interesting features.

Brewster’s angle discontinuity

In anisotropic materials, Brewster’s angle takes the form

tan θB =

√
ε′z(λ)

ε′x(λ)− 1

ε′z(λ)− 1
, (2.14)

where ε′x,z is the real part of the dielectric function and where incidence from vacuum

was assumed. This equation features a zero in the denominator when ε′z(λ) = 1. One

expects to be able to observe this divergent behavior experimentally.

In Fig. 2.7(c) we plot the spectral dependence of Brewster’s angle superimposed

with the computed ratio of TM and TE intensity reflection coefficients using the

dielectric functions of the experimental system. It is apparent that the functional

dependence of the dielectric functions not only guarantees the diverging behavior,

but also ensures that the typical values of the Brewster’s angle for wavelengths that

are lower or higher than that critical point are quite different. This discontinuity in

the Brewster’s angle was clearly seen in the experimental data [see Fig. 2.7(a)], where

the ratio of TM and TE intensities was measured as a function of incidence angle and

wavelength. The experimental data showed very good qualitative and quantitative
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Figure 2.7: (a) Experimental reflectance data (b) Theoretical prediction (c) Brew-
ster’s angle discontinuity: Brewster’s angle given by Eq. (2.14) superimposed on the
theoretically predicted TM/TE reflection ratio curves. (d) Full numerical calculations
demonstrating negative refraction of a monochromatic transverse-magnetic-polarized
gaussian beam across an air-metamaterial interface (adapted from Ref. [62])
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agreement with the theoretical prediction [Fig. 2.7(b)], which used only the reported

material doping density and sample thickness and was based on the transfer matrix

method (see Appendix C).

Zero-reflection bands

The experimental data exhibited several bands of near-zero reflection bands in the TE

polarization as the wavelength of the illuminating light was changed. Although we

have been treating this metamaterial in the effective medium approximation, because

it is a precisely manufactured multilayer stack, it is amenable to standard transfer

matrix analysis.

Let us assume that the medium contains N layer pairs of equal thickness 2d (for

each pair) and refractive indexes n2, n1. If the medium to the left and the right of

the structure has the index n1, the amplitudes of incident and reflected waves are a0

and b0 and the amplitude of the transmitted wave is aN , we can write:

a0

b0

 = TN

aN
bN

 , (2.15)

where T is the transfer matrix for the 2-layer unit cell of our superlattice obtained via

boundary conditions at the interfaces of the unit cell. Note that for any diagonalizable

matrix, TN can be computed analytically.

The elements of T are given by

t11 = e−ik1d

(
cos(k2d)− i

2

(
k2

k1

+
k1

k2

)
sin(k2d)

)
t12 = −eik1d

i

2

(
k2

k1

− k1

k2

)
sin(k2d)

t21 =
i

2
e−ik1d

(
k2

k1

− k1

k2

)
sin(k2d)

t22 = eik1d

(
cos(k2d) +

i

2

(
k2

k1

+
k1

k2

)
sin(k2d)

)
,

(2.16)
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where k1 and k2 are defined by

ε1

(ω
c

)2

= k2
1 + k2

‖

ε2

(ω
c

)2

= k2
2 + k2

‖.

(2.17)

The reflection coefficient for TE fields is given by

rN =

(
b0

a0

)
bN=0

=

(
TN21

)
(TN11)

=
e−ik1d 1

2

(
k1

k2
− k2

k1

)
sin(k2d)

sin(k1d) cos(k2d) + 1
2

(
k1

k2
+ k2

k1

)
sin(k2d) cos(k1d) + i sin(φ)

tan(Nφ)

,

(2.18)

where φ = ω
c
2d.

For the case k1,k2 � 1
d
, we also have φ � 1, and we can use the following

approximation for rN :

rN =
1−

(
k2

k1

)2

3 +
(
k2

k1

)2

+ 2 i φ/k1d
tan(Nφ)

. (2.19)

Let us assume now that the medium to the left of the layered structure is air, with

ε0 ≡ 1 and the dispersion relation

(ω
c

)2

= k2
0 + k2

‖.

The reflection coefficient of the structure is now

r =
r0 + rN
1 + r0rN

, (2.20)

where

r0 =
k0 − k1

k0 + k1

. (2.21)
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Figure 2.8: Solutions of Re(r0 +rN) ' 0 (red hairpin curves) and Im(r0 +rN) ' 0 (red
vertical stripes) superimposed on the grayscale plot of r(θ, λ) (white regions indicate
0 reflection) for 2 µm (a), 5 µm (b) and 8 µm (c) total device thickness.

We seek regions of zero reflection, i.e. regions where (2.20) vanishes. In these

regions, r0 + rN = 0 is satisfied, with r0 and rN given by (2.21) and (2.18). With

these substitutions, r0 + rN = 0 is equivalent to

2k0k1 − k2
1 − k2

2 + i
φ/d

tan(Nφ)
(k0 − k1) = 0,

with φ ' d
√

2(k2
1 + k2

2) for k1,k2 � 1
d
.

We model our system as a series of metallic–dielectric layers, with no losses in the

dielectric layers (ε1 = 12.1) and with a complex dielectric function in the metallic

layers given by Drude model (ωpl = 1300 cm−1, τ = 0.2 ps) as

ε2 ' ε1

(
1−

ω2
pl

ω2

)
+ i ε1

1

ωτ

ω2
pl

ω2
.

Thus, r0 + rN is a complex function, and to identify the regions where r0 + rN ' 0

we plot Re(r0 + rN) ' 0 and Im(r0 + rN) ' 0 as a function of incidence angle θ

and wavelength λ, looking for areas where the curves intersect. Figure 2.8 shows

these curves superimposed with the reflection coefficient calculated via (2.20) for

superlattice thickness of 2, 5, and 8 µm. It is evident that regions of near perfect
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Figure 2.9: (a) Schematic representation of the array of nanowires in a dielectric
host. (b) Dielectric function of the nanowire medium (silver embedded in alumina)
computed using the Maxwell-Garnett approximation for Npl=8.25%. For wavelengths
greater than 873 nm, the medium exhibits the {ε⊥ < 0, ε‖ > 0}-type anisotropy. Inset
indicates the orientation of the dispersion relation hyperbola in that region. Close to
the ε⊥ = 0 point, the asymptotes of the hyperbola collapse to a single vertical line.

transmission exist where the solutions to the real and imaginary parts of r0 + rN ' 0

intersect or are in close proximity.

2.3.2.2 Aligned nanowires: Ag-filled alumina implementation

We now turn to another possible implementation of a hyperbolic metamaterial: an ar-

ray of aligned metallic (ε < 0) nanowires embedded in a dielectric host [see Fig. 2.9(a)].

Such materials are usually fabricated as optically thick dielectric plates with the

nanowires grown vertically.

In the general case, the full analytical treatment of fields in such a material is

complicated. However, the case of small plasmonic inclusion concentration for ap-

proximately normal incidence is adequately described by the Maxwell-Garnett ap-

proximation as

ε‖ =
εd (εd + εpl) (1−Npl) + 2εdNplεpl

2εdNpl + (εd + εpl) (1−Npl)

ε⊥ = εd (1−Npl) +Nplεpl,

(2.22)
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where Npl and εpl are the volume fraction and the permittivity of plasmonic inclusions

and εd is the dielectric constant of the host medium.

We plot the resultant dielectric function in Fig. 2.9(b) for the particular case of

silver nanowires embedded in alumina substrate. Wavelength dependence of the di-

electric functions was modeled after Refs. [63] and [64]. From this plot we can see

that for wavelengths greater than 873 nm, the medium exhibits the {ε⊥ < 0, ε‖ > 0}-

type hyperbolic anisotropy. Note that this is the same type of anisotropy that we

considered before in the planar metamaterial. This might seem puzzling, as the orien-

tation of the plasmonic components in these two types of metamaterials is different.

However, close examination of Fig. 2.6(b) and Fig. 2.9(b) reveals that the general

behavior of ε‖ and ε⊥ are indeed switched for the planar and the nanowire structure.

Due to the resonant-like behavior of one of the dielectric tensor components, both

materials support regions with both types of hyperbolic dispersions (i.e. ε⊥ = 0 and

ε‖ = 0); the operating frequencies in the two experiments are chosen such that only

the ε⊥ < 0-type dispersion is in effect.

Close to the ε⊥ = 0 point, the asymptotes of the hyperbola collapse to a single

vertical line. As a result, only normally-incident light is able to penetrate into the

material, which effectively acts as a very narrow angular filter. We can estimate the

acceptance angle of the material by plotting the angle between hyperbola’s asymptotes

as a function of Re[ε⊥] [Fig. 2.10(b)] using Eq. (2.10). For Re[ε⊥] = −0.0057, this

result gives 4.2 degrees.

To get a more precise estimate for angular transmission, we can find the exact

solution for the transfer function of an anisotropic slab. It can be derived by summing

a geometric series arising from multiple reflections, or by explicitly solving Maxwell’s

equations subject to the standard boundary conditions. Assuming the material is

anisotropic and surrounding medium is vacuum, the intensity transfer function for

the P and S polarizations is
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(a) (b)

(c) (d)

Figure 2.10: (a) Hyperbolic dispersion isofrequency plot for the case Re[ε⊥] ≈ 0
(ε⊥ = −0.0057 + 0.03i); wave vector isofrequency plot in vacuum (circle with radius
1) is plotted in comparison. The angular width of the hyperbola branch is 4.2 degrees.
(b) Angular width of the hyperbola as a function of Re[ε⊥]; it can serve as an estimate
for FWHM of the transmitted signal. (c) FWHM of the angular transmittance band
as a function of Re[ε⊥], calculated at Re[ε‖] = 3, Im[ε‖] = Im[ε⊥] = 0.01, d = 40 µm,
and λ = 600 nm. (d) FWHM of the transmittance peak for p polarization, calculated
as a function of wavelength. Note that FWHM is minimal when Re[ε‖] ≈ 0. (Adapted
in part from Ref. [65])
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(a) (b)

Figure 2.11: Averaging of the multiple beam interference reflection oscillations: (a)
analytical result; (b) numerical averaging over many realizations obtained by ran-
domly perturbing device thickness

T (P |S)(kx) =

∣∣∣∣∣∣∣∣
1

cos (dkz2)− 1
2
i sin (dkz2)

(
K

(P |S)
2

kz1
+

kz1

K
(P |S)
2

)
∣∣∣∣∣∣∣∣
2

. (2.23)

Here,

kz1 =
√

1− k2
x

K
(P )
2 = k(P )

z2
/ε‖, K

(S)
2 = k(S)

z2

k(P )
z2

=

√
ε‖

(
1− k2

x

ε⊥

)
, k(S)

z2
=
√
ε‖ − k2

x.

(2.24)

When plotted in the regime of weak losses, these equations show rapid oscilla-

tions due to interference arising from multiple reflections. In practice, phases of the

reflected light are often randomized by variations in the slab thickness and surface

imperfections. Intensity transfer function is then obtained by taking an average over

the phases; it can be expressed as

T
(P |S)
I (kx) =

|t12t21|2√
|r|8e−4d Im

[
k

(P |S)
z2

]
− 2|r|4 + e

4d Im
[
k

(P |S)
z2

] , (2.25)

where
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t12 =
2

1 +K
(P |S)
2 /kz1

t21 =
2

1 + kz1/K
(P |S)
2

r =
1−K(P |S)

2 /kz1

1 +K
(P |S)
2 /kz1

.

(2.26)

It is interesting to compare the curves given by Eqs. (2.23) and (2.25). In Fig. 2.11(a)

we superimpose those two curves, while in Fig. 2.11(b) we show the transmission

function of Eq. (2.23) together with its averaged value as d is randomly varied over the

range of a few λ. Predictably, we see that oscillations due to multibeam interference

effects average out completely.

When ε⊥ ≈ 0, we have Im k
(P )
z2 ≈

√
ε‖/ε⊥kx � 1. In this regime, for kx > 0 (non-

normal incidence) the leading term of Eq. (2.25) becomes exp(−2d
√
ε‖/ε⊥kx) � 1,

which indicates that transmission of P polarization is exponentially suppressed.

In realistic materials, the ε⊥ ≈ 0 condition is difficult to achieve due to the presence

of finite losses. However, the weaker set of constraints Re ε⊥ ≈ 0, Im ε⊥ . 1 still

results in exponential suppression of P polarization. The onset of this exponential

cut-off, as well as the width of the transmission pass-band (centered around kx = 0)

can be quantified by assuming

Re ε⊥ � Im ε⊥; Im ε‖ � Re ε‖, (2.27)

which allows to expand the denominator of Eq. (2.25) while taking the numerator to

be constant. The result is

T
(P )
I (kx) ' 4

√
Re
(
ε‖
)

(√
Re
(
ε‖
)

+ 1
)2 · exp

−d Im
(
ε‖
)√

Re
(
ε‖
)
 exp

(
−k2

x/2σ
2
)
, (2.28)
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(a) (b)

Figure 2.12: (a) Transmittance functions for p polarization (1) and s polarization (2)
in the regime Re[ε‖] ≈ 0. (b) Experimentally measured angular transmittance profiles
in for p and s polarization shows qualitative agreement with theoretical predictions.
(Adapted from Ref. [65])

where

σ2 =
[Im (ε⊥)]2

√
Re
(
ε‖
)

2d
(
Im (ε⊥)Re

(
ε‖
)
− Re (ε⊥) Im

(
ε‖
)) . (2.29)

The angular spectrum intensity passband for P polarization can be described by a

Gaussian curve; lowering the imaginary permittivity contributions while maintain-

ing the conditions {Re ε⊥ � Im ε⊥; Im ε‖ � Re ε‖}, results in a narrow angular

transmittance band centered on kx = 0.

As follows from Eq. (2.25), the full width at half maximum (FWHM) of the trans-

mittance band has a minimum at Re ε⊥ = 0 [see Fig. 2.12(c,d)]. The transmittance

in S polarization, T SI (kx), is found to be nearly independent of the incidence angle

[Fig. 2.12(a)]. Such transmission characteristics make the uniaxial ENZ metamateri-

als particularly suitable for application in narrow-band angular filters and polarizers.

Experimental data from transmission measurements of an array of silver nanowires

embedded in an alumina membrane is plotted in Fig. 2.12(b). In a qualitative agree-

ment with the theoretical predictions, it is seen that the transmittance peak in P

polarization is rather narrow, while the transmittance band in S polarization is sig-

nificantly broader. This suggests that after proper optimization, the demonstrated

ENZ metamaterial can be used as an angular filter and polarizer. The relatively large
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width of the experimental transmittance peak can probably be explained by imper-

fections of the sample causing scattering and partial depolarization of light inside the

membrane’s volume [65].

2.4 Conclusion

In this chapter, we introduced the concept of hyperbolic dispersion relation, and dis-

cussed the possible material systems (natural and artificial) that support the strong

anisotropy required for hyperbolicity. We also presented the theoretical and experi-

mental results related to reflection and transmission of light through these materials.

While conceptually simple, those experiments have demonstrated the fundamentally

new behavior of hyperbolic metamaterial systems, such as negative refraction, Brew-

ster’s angle discontinuity, and narrow angular filtering in the ENZ regime.

However, there is much more to the story of hyperbolic materials than negative

refraction and modified transmission properties. Indeed, this is true for metamaterials

in general: “negative refraction” was a headlining phenomenon in the early days of

metamaterials, but the real interest from the research community focused on the

Veselago medium’s ability to support unusual waves and/or resonances (which, in

particular, enabled Pendry’s famous superlens [2]).

In the following sections we will continue describing the novel properties of the

hyperbolic materials, focusing on the fundamental ways in which light propagation

changes owing to the hyperbolic dispersion relation. This can lead to many prospec-

tive applications in a diverse range of nanophotonic devices.
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Chapter 3

Hypersingularity

3.1 Introduction

The previous chapter dealt with the role of HMMs in enabling negative refraction

and closely related phenomena. Those were important first steps in understanding

the optics of this novel medium. However, this is just the beginning of the story. In

order to appreciate the potential impact of hyperbolic dispersion in materials, it is

enough to recognize that it implies the lack of high spatial frequency cut-offs associ-

ated with all conventional optical propagation. It is exactly those cut-offs that limit

the resolution of imaging instruments. It is also the reason that integrated optical

components are so ponderous and bulky compared to the svelte 20 nm transistor

gates or 80 nm interconnects of modern microelectronics. The ability to support

high-k propagating waves, guiding and confining light on scales much smaller than

the vacuum wavelength, imbues HMMs with great potential in novel nanophotonic

devices.

The behavior of light in any optical device is determined both by the properties

of materials in which light propagates and by device geometry, which sets up the

boundary conditions. Often, it is the interplay of those two factors that determines the
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device operation, and it is only in the context of appropriate boundary conditions that

some of the unusual features of material response can become apparent. The original

superlens [2] is an example of this: only after considering the Veselago medium in

the impedance-matched planar slab configuration did it become apparent that unlike

conventional materials, it can support degenerate, dispersionless surface polaritons

that can potentially be used for subwavelength imaging [66].

The development of hyperbolic metamaterials followed a somewhat similar path.

The original reports of negative refraction [28, 31, 30] were followed by proposals to

use HMMs for subwavelength-resolved imaging [67, 68, 33, 69, 4]. The key, in each

proposal, was the unbounded nature of the hyperbolic dispersion relation. However,

all but two of those papers described planar systems. It turned out that treatment

of HMMs using curvilinear boundary conditions [69, 4], and the resultant analysis of

angular momentum states in the proposed hyperlens [4] served as a take-off point for

understanding the singularity in the photonic density of states exhibited by hyperbolic

materials, a phenomenon that has broad implications beyond super-imaging. Let us,

then, proceed with the description of the hyperlens.

3.2 The hyperlens

3.2.1 Hyperbolic dispersion in cylindrical coordinates

To appreciate what is different about the hyperbolic dispersion when we allow the

systems to be non-planar, consider the solution to Maxwell’s equations in cylindrical

coordinates:

∇×
[
ε−1(∇×H)

]
=
ω2

c2
H . (3.1)

As before, we focus primarily on the TM modes, which, in this geometry, means that

the only component of the field H is in the ẑ direction. In cylindrical coordinates,
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Eq. (3.1) becomes

1

r

∂

∂r

r

εθ

∂Hz

∂r
+

1

r2

∂

∂θ

1

εr

∂Hz

∂θ
+
ω2

c2
Hz = 0. (3.2)

The solution to this equation is standard: Ansatz Hz(r, θ) = Hz(r) exp(imθ) converts

Eq. (3.2) into the Bessel equation, and requiring finite fields everywhere, the solution

is

Hz(r, θ) = J
m
√
εθ
εr

(√
εθ
ω

c
r
)

exp(imθ). (3.3)

We can obtain some intuition about the behavior of these solutions in an anisotropic

environment by generalizing the dispersion relation of Eq. (2.4) for the case of cylin-

drical geometry. In particular, we have

k2
r

εθ
+
k2
θ

εr
=
ω2

c2
. (3.4)

Note that this assumes cylindrical anisotropy, i.e. the wave traveling in the radial

direction at an arbitrary angle will induce the same polarization response. We are

not simply taking a uniaxial crystal and imposing cylindrical boundary conditions.

Although we are not working in the plane wave basis, the quantities kr and kθ

have a very similar meaning to the familiar components of the wave vector. Namely,

kr gives the spatial oscillation frequency in the radial direction, and kθ in the angular

direction. Furthermore, we can give an explicit expression for kθ via

eimθ = eirθkθ . (3.5)

Together with the usual association p = ~k, this implies that m = rkθ can be in-

terpreted as angular momentum. Periodic boundary conditions ensure that m is an

integer. Thus, for every discretem Eq. (3.3) represents a different angular momentum

state.
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(a) (b)

(c) (d)

Figure 3.1: Bessel functions [radial part of Eq. (3.3)] and field magnitude of whispering
gallery modes in isotropic (ε = 2) (a,c) and hyperbolic ({εr = −2, εθ = 2} (b,d)
cylindrical structures for a high angular momentum mode (m=36). (Adapted in part
from Ref. [4].)

Eq. (3.4) gives an intuition for the behavior of the Bessel solutions (3.3) for small

values of r. Notice that for m 6= 0, as r decreases, the tangential wave vector com-

ponent kθ grows, while kr decreases. For some critical value r = Rc, this radial

component of the wave vector vanishes and then becomes imaginary. This classical

turning point – the boundary at which the incoming wave turns back – corresponds

to the caustic. Inside the caustic, the angular momentum states become evanescent.

Using the condition kr = 0, it is easy to find the radius of the caustic from Eq. (3.4):

Rc = mλ/(2π
√
εr). It is interesting to note that the caustic radius increases with

angular momentum and the circumference of the caustic corresponds exactly to m

wavelengths (since for the wave propagation strictly in the tangential direction, the

local wavelength is λ/εr).

What we just described can be viewed as a statement of the diffraction limit in

cylindrical geometry. Indeed, the conventional way to think about diffraction is in
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terms of spatial Fourier harmonics of the electric field. The field is expressed as a

superposition of plane waves, each proportional to exp(ik ·r). Eq. (2.4) shows that in

conventional materials, large values of kx cause this propagation factor to exponen-

tially decay, much in the same way that large values of kθ in the cylindrical geometry

cause the angular momentum states to become evanescent beyond the caustic.

All of the above considerations, while taking into account anisotropy, implicitly

assumed εr,θ > 0. Let us relax this assumption and reexamine the results. By analogy

with planar systems, we might expect that a different form of the dispersion relation

might enable waves that would have been otherwise cut off to propagate. Indeed, this

is exactly what happens.

The existence of caustic, and hence the exponential decay of the field for r < Rc,

is a consequence of the upper bound on kθ dictated by the exact functional form of

dispersion relation (3.4). What happens when this expression describes a hyperbola?..

We will consider, in particular, the case {εθ > 0, εr < 0}. The dispersion relation of

Eq. (3.4), then, allows for very high values of k, limited only by the material scale

of the medium. As the tangential component of the wave vector increases towards

the center as shown in Fig. 2.1 the radial component also increases; Eq. 3.4 can be

satisfied for any radius and any value of m. Thus, as long as the effective medium

description is valid, there is no caustic, and, as can be seen in Fig. 3.1, the high angular

momentum states have appreciable magnitude of the field at the center (r ≈ 0). It

is evident that the distance between the field nodes (i.e. the effective wavelength) at

the center is much less than its vacuum value. The field thus penetrates to the center

and acts as the subwavelength probe for an object placed at the origin. Since in the

medium with {εθ > 0, εr < 0} anisotropy these high angular momentum modes are

propagating waves, they can carry the information about subwavelength structure of

the object to the far field.
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(a)

(b) (c)

Figure 3.2: Scattering of an incident plane wave (a) can be represented as scattering
of various angular momentum modes. Higher order modes are exponentially small at
the center (b). This results from an upper bound on values of kθ and the formation
of the caustic shown in red in (c). (From Ref. [4])

Because of the potential imaging applications enabled by hyperbolic anisotropy

in cylindrical coordinates, and because the usual description of this problem involves

a curved dielectric-metamaterial interface, the device that uses the high angular mo-

mentum modes to probe the structure of an object placed at the center was called

the hyperlens [4].

3.2.2 Angular momentum states as information channels

Up until now, the discussion of subwavelength imaging in cylindrical hyperbolic ma-

terials has been somewhat heuristic. We can put it on a firmer theoretical ground by

considering the angular momentum states from the point of view of scattering theory.

In traditional discussions of imaging, waves scattered by the object are examined

in a monochromatic plane wave basis with a wide spectrum of spatial frequencies.

The choice of basis, however, is dictated by the symmetry of the object under con-
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sideration and/or by convenience. Furthermore, we can often conveniently switch

between different bases.

In scattering problems, the principal object under consideration is the scattering

potential. It is easiest to study its properties by using cylindrical or spherical coordi-

nates with the scatterer at the center. One of the reasons it works so well is the fact

that any plane wave illuminating an object can be expanded in a basis of cylindrical

waves as

exp(ikx) =
∞∑

m=−∞

imJm(kr) exp(imφ), (3.6)

where Jm(kr) denotes the Bessel function of the first kind and m is the angular

momentum mode number of the cylindrical wave [this decomposition is illustrated

schematically in Fig. 3.2(a)]. (Eq. (3.6) is known as the Jacobi-Anger identity; a

similar expansion exists in terms of spherical Bessel functions.) In this representation,

reconstructing an image is equivalent to retrieving the scattering amplitudes and

phase shifts of the various constituent angular momentum modes. The resolution

limit in the cylindrical wave basis can be restated as the limit to the number of

retrieved angular momentum modes with appreciable amplitude or phase change after

scattering from the object.

We may think of the scattered angular momentum modes as distinct information

channels through which the information about the object at the origin is conveyed

to the far field. However, even though the number of these channels is infinite [m

is unbounded in expansion (3.6)], very little information is carried over the high-m

channels. As evidenced by Fig. 3.2(b), which shows the exact radial profile of the

electric field form=1 andm=14, for high values ofm the field exponentially decays at

the origin. This suggests that the interaction between a high-m mode and an object

placed at the origin is exponentially small, i.e. the scattering of such modes from the

object is negligible. Classically, this corresponds to the parts of an illuminating beam

that have a high impact parameter and therefore miss the scatterer.
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In the hyperlens, this picture changes dramatically, owing to the fact that high

angular momentum modes are able to propagate throughout the device. As a result,

the number of information channels is significantly larger – it is, in principle, infinite

for an ideal medium. Recall that at a distance r from the center of the device, the

tangential wave vector is given by kθ = m/r. The spatial length scales probed are of

the order r/m. The higher-m information channels are able to convey information

about arbitrarily fine spatial structures, with the resolution limited only by cut-offs

associated with material patterning scale and losses.

3.3 Emergence of broadband singularity

We have seen that an ideal cylindrical hyperbolic medium is able to support arbi-

trarily high angular momentum modes, which results in an arbitrarily high number

of scattering channels. Another way to view this is that the hyperbolic form of the

dispersion relation allows photons of a certain energy to occupy states that were pre-

viously unavailable to them – in fact, an infinite number of states. We can formalize

this notion by introducing the concept of a photonic density of states (PDOS) in

hyperbolic metamaterials.

Density of states has been central to understanding the behavior of many con-

densed matter and photonic systems. Indeed, the standard result

dn

dω
=

ω2

π2c3
(3.7)

for the density of electromagnetic modes in vacuum enters into virtually all compu-

tations involving emission or absorption probabilities (after causing many a sleepless

night for the late 19th century physicists grappling with the ultraviolet catastrophe).

This vacuum expression can be modified by setting up appropriate boundary condi-

tions. As shown by Purcell, radiative properties of an emitter can be strongly altered
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inside a resonance cavity, which can enhance mode density [70]. In recent years, den-

sity of states has been extensively used in studying the behavior of light in photonic

crystals [71] and other photonic nanostructures [72], particularly in the context of

enhancing or inhibiting the rate of spontaneous emission.

The studies referenced above use primarily device geometry to influence the den-

sity of states. It is not hard to see, however, that the density of states can be also

be altered by material properties – for instance, if one neglects local field corrections,

it can be shown that in lossless dispersionless dielectrics, Eq. (3.7) is enhanced by a

factor n, the index of refraction [73]. The more general treatment must take those

two factors into account.

In the case of hyperbolic metamaterials, the density of states is given by

dn

dω
≈ K3

max

12π2

∣∣∣∣ εzεx
(

1

εx

dεx
dω
− 1

εz

dεz
dω

)∣∣∣∣ , (3.8)

where Kmax is the upper momentum cutoff (determined by either the patterning scale

of the metamaterial or by losses), and where the {εx < 0, εz > 0} type anisotropy was

assumed.

Eq. (3.8) represents substantial enhancement over the photonic density of states in

vacuum. This has immediate consequence for emission and absorption of radiation by

dipoles in vicinity of hyperbolic metamaterials. In the next section, we will examine

the this problem in some detail, comparing the effects of dielectric, metallic, and

hyperbolic substrates on radiative lifetime of an emitter. We will find that, indeed,

the nature of the substrate material and the associated density of states has a strong

impact on fluorescence.
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3.4 Radiative decay engineering

3.4.1 Introduction

Interactions between emitters and nanophotonic structures are of central importance

in contemporary optical science. Many devices in the fields of sensing, quantum

information processing, and plasmonics, among others, may be modeled as dipoles

interacting with some (possibly complex) medium.

An important characteristic of a radiating dipole is its rate of energy dissipation.

It has long been known that this rate can be modified by the external environment.

Much of the past work focused on studying dipole radiation in resonant cavities. In

recent years, due to rising interest in waveguide and metamaterial devices, changes

in dipole lifetime in close proximity to planar structures or stratified media are often

helpful to consider. In this section, we solve the problem of a dipole in the presence of

a hyperbolic slab or half-space and study the effect of the increased photonic density

of states in material on dipole lifetime.

3.4.2 Radiative lifetime and spontaneous decay rates: general

theory

Up until now, when talking about light propagation or refraction involving metama-

terials, we simply considered the field harmonics in plane wave (or, in the case of the

hyperlens, Bessel function) basis, setting up boundary conditions as needed and using

the ω(k) dispersion relations. In this section, we will explicitly put emitters into the

picture. It turns out that the standard methods we just mentioned can be readily

used to study changes in the dipole lifetime – a key characteristic of an emitter. As a

starting point, we need little more than Fresnel reflection coefficients and the ability

to decompose the S and P polarizations of the dipole into transverse spatial frequency

harmonics. We review these results in Appendix A.
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The general expressions for computing power radiated by the dipole comes from

Poynting’s theorem for harmonic fields:

dW

dt
= −1

2

∫
Re[j∗ ·E]dr =

ω

2
Im[m∗ ·E(hẑ)], (3.9)

where we used the dipole current defined in Eq. (A.11).

We can now use Eq. (A.20) to obtain the Larmor radiation formula for a dipole

in vacuum. For this, we simply take the limit of the integrand as r⊥ → 0, z → h,

rewrite the expression in polar coordinates and take the angular integral. Note that

the delta-function term in Eq. (A.20) vanishes when taking the imaginary part in

Eq. (3.9). We are left with

dW

dt
= Im

{
iω

16πε0

∫ ∞
0

[
k

qz

(
k2
(
|m⊥|2 + 2|mz|2

)
+ 2q2

z

(
|m⊥|2

))]
dk

}
, (3.10)

where |m⊥|2 ≡ |mx|2 + |my|2. Because we are taking the imaginary part, we require

the integrand here to be purely real. Due to the qz term, the integrand is in fact

purely real for k ∈ [0, ω/c] and purely imaginary for k > ω/c. Picking ω/c as the

upper integration limit, we obtain the familiar Larmor formula:

dW

dt
=
|m|2ω4

12πε0c3
. (3.11)

The same procedure can be used to compute the power radiated by a dipole in

the presence of a homogeneous or stratified medium. To do this, Eqs. (A.25) and

(A.27) must be taken as the starting point. The integrals are only somewhat more

involved. Because of the complex reflection coefficients, we can no longer decompose

the integrand into a purely real and imaginary part, and hence the solution remains

as an integral over all values of the transverse wave vector component.
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We now proceed to compute a closely related quantity, and one that is often of

greater practical importance: the decay rate γ. The radiative power dissipated by

the dipole can be related to its decay rate via the semiclassical expression[74]

γ = P/~ω. (3.12)

For any realistic emitter, particularly in the presence of other media, the total

decay rate is a sum of radiative (γrad) and non-radiative (γnr) contributions. We can

define the quantum efficiency η as

η =
γrad

γrad + γnr
. (3.13)

We are interested in computing the decay rate as a function of the separation

distance h between the dipole and the surface. We normalize the decay rate by that

of a dipole in free space [meaning that it still admits non-radiative decay channels,

but the radiative power is given precisely by Eqs. (3.11) and (3.12)]. We write this

decay rate as

γ̃(h) =
γ

γ0

=
γnr + γrad
γnr + P0/~ω

, (3.14)

where P0 is given by the Larmor formula, Eq. (3.11). Because of the presence of

scattered fields, the radiative decay rate term in the numerator can be written as

γrad = (P0 + Ps)/~ω, where Ps gives the radiated power computed via Eq. (3.9)

applied only to the reflected fields. Furthermore, assuming the quantum efficiency in

Eq. (3.13) is independent of h, we can express γnr in terms of η and P0, resulting in

a very simple expression for the reduced decay rate:

γ̃(h) = 1 + η
Ps
P0

. (3.15)
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It is straightforward to compute Ps by starting with Eqs. (A.25) and (A.27), keeping

only the terms with the reflection coefficients rp and rs. The result is

γ̃(h) = 1 + ηRe
3c3

4|m|2ω3

∫ ∞
0

kx dkx
[
rs(kx)|m⊥|2

(
k2
x + q2

z

)
−

−rp(kx)
(
|m⊥|2q2

z − 2|mz|2k2
x

)] e2ihqz

qz
(3.16)

(we emphasize that the integration variable is the transverse wave vector coordinate

kx). It is apparent from Eq. (3.16) that aside from the position and orientation of the

emitter, the key contribution to its lifetime (relative to the vacuum case) comes from

the reflection properties of the medium. This is not surprising, since these properties

determine the total strength of the electric field at the dipole, which, as we have seen,

affects the radiated power. More importantly, the coefficients rp and rs reveal details

about the coupling of energy from the emitter into the medium. Indeed, different

materials may predominantly transmit, absorb, or reflect energy; in addition, they

may support a variety of guided modes, leaky modes, or surface excitations. All these

phenomena can be gleaned from the behavior of reflection coefficients, and can have

a dramatic impact on dipole lifetime.

3.4.3 Dipole lifetime near an interface: effects of metals, di-

electrics, and hyperbolic materials

We now proceed to illustrate the effects of proximity of different materials on the

lifetime of an emitter. In particular, we discuss the differences between dielectrics,

metals, and hyperbolic media. The interaction of electromagnetic waves with these

three classes of materials reveals rather different physics, which has a direct impact
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Figure 3.3: Normalized lifetime of a vertically [panel (a)] and horizontally [panel
(b)] oriented dipole as dependent on distance h from a half-infinite material in the
horizontal plane. Materials considered are dielectric, ε = 2 (solid curves), strongly
anisotropic metamaterial, {εx, εy} = {2,−5} (dashed curves), and metal, ε = −30+8i
(finely dashed curves).

on dipole decay rate. We shall see these fundamental differences most dramatically

in the limit of very close proximity (h� λ) and low loss.

In Fig. 3.3 we plot the normalized lifetime (τ/τ0 ≡ γ̃−1) of a dipole as a function

of its height above a substrate. The lifetime of the dipole in the vicinity of a medium

(closer than about one vacuum wavelength) is seen to depend strongly on the nature

of the material. Here we consider the case of a lossless dielectric, a metal (with

loss), and a strongly anisotropic (hyperbolic) metamaterial (lossless). For the metallic

substrate, the dipole lifetime approaches zero as the separation between metal and

dipole vanishes: the emission is effectively quenched [75, 76]. Likewise, the dipole

lifetime tends to zero when metal is replaced with a hyperbolic medium. The dielectric

substrate, in contrast, never completely suppresses the fluorescence.

We can understand the origin of this different behavior by examining the integrand

of Eq. (3.16) in the limit h � λ. In this limit, contributions to the integrand that

arise from large values of the transverse wave vector, kx � ω/c, become important.

With this in mind, we assume kx ∈ [ω/c,∞] and write qz ≡ iκ = i
√
k2
x − (ω/c)2. For

simplicity here (and for the rest of this chapter) we assume the dipole to be vertically
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oriented (m = ẑ). We can then write Eq. (3.16) as

γ̃(h) ' 1 + η
3

2

1

(ω/c)3

∫ ∞
ω/c

Im(rp)
k3
x

κ
e−2hκdkx. (3.17)

Assuming that the leading contribution to the integral in Eq. (3.16) comes from

large wave vectors (kx � ω/c) we can write κ ≈ kx. Furthermore, rp (as given by

Eq. (A.31)) becomes independent of kx to leading order. We can, therefore, obtain a

simple analytical solution for the decay rate. For the case of metallic substrate, it is

γ̃(h) ' 1 + η
3

4

1

(hω/c)3
Im
(
ε− 1

ε+ 1

)
= 1 + η

3

2

1

(hω/c)3

ε′′

(1 + ε′)2 + ε′′2
,

(3.18)

where we used the usual definition ε ≡ ε′ + iε′′.

We conclude that in the vicinity of a lossy substrate (be it metal or dielectric)

the emitter lifetime vanishes as h3 as the separation h between the emitter and the

substrate goes to zero. The physical origin of this dependence is the non-radiative

transfer of energy into leaky waves propagating along the surface of the substrate,

which come to dominate over other decay channels at very close distances [77]. In

light of this discussion, it is reasonable that the lifetime of an emitter plotted in

Fig. 3.3 tends to zero for a lossy metal, but approaches a finite limiting value in the

case of a lossless dielectric. Furthermore, we can understand why a lossless hyperbolic

metamaterial substrate induces a quenching effect similar to that observed for lossy

materials. By examining Eqs. (A.29) and (A.31) we can see that for the hyperbolic

material with εx > 0 and εz < 0, Im(rp) 6= 0 even if the dielectric tensor is purely

real; as a result, we get a similar h3 dependence of dipole lifetime on height above

the substrate. In this case, the energy is transferred to the bulk propagating waves

inside the hyperbolic material. Indeed, one can view this transfer of energy as arising
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from the increased (formally infinite) density of photonic states that characterizes the

hyperbolic medium [78].

3.4.4 The role of geometry: dipole lifetime near waveguides

In addition to the basic material parameters, device geometry plays a significant role

in determining radiative decay characteristics. To provide a simple illustration of

this, we turn out attention to slab waveguides (note that a filled half-space can be

regarded as a limiting case of a waveguide with thickness d → ∞). To determine

radiative decay rate in the vicinity of a waveguide, we use Eqs. (3.16) and (3.17) with

rp given by

rp =

ε
(2)
x q

(1)
z

ε
(1)
x q

(2)
z

− ε
(1)
x q

(2)
z

ε
(2)
x q

(1)
z

ε
(2)
x q

(1)
z

ε
(1)
x q

(2)
z

+ ε
(1)
x q

(2)
z

ε
(2)
x q

(1)
z

+ 2 i cot(dq
(2)
z )

, (3.19)

where q(2)
z is given by Eq. (A.29), q(1)

z =
√

(ω/c)2 − k2
x, and ε

(1)
x = 1 for the case of

dipole in vacuum that we treat here.

In Fig. 3.4 we plot the normalized lifetime τ of the vertically oriented dipole as a

function of its height above a metallic or hyperbolic waveguide (note the logarithmic

scale on both axes). The different panels correspond to different waveguide thick-

nesses (d = ∞, d = 0.01λ, and d = 0.001λ), and metallic and hyperbolic curves are

plotted on the same axes for ease of comparison; in addition, we plot the lifetime

for several values of material losses (ε′′ ∈ {0, 0.01, 1}). Since the excitation of lossy

waves provides an important decay channel (as shown above), it is instructive to

consider the dipole lifetime in the limit of zero losses, gradually increasing them to

more realistic values. It is interesting to note that even though the zero loss assump-

tion substantially simplifies many problems in optics and electromagnetics, in this

particular case it leads to increased difficulties, since the denominator of Eq. (3.19)

acquires infinitely sharp resonances (two, corresponding to the excitation of surface

plasmons in the case of the metallic slab, and infinitely many, corresponding to guided
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(a) (b) (c)

Figure 3.4: Normalized lifetime of a vertically oriented dipole vs. distance from
a metallic (ε′ = −5; solid curves) or hyperbolic ({ε′x, ε′y} = {5,−5}; dashed curves)
waveguide; note the log-log scale. Different curves correspond to varying the amount
of loss (ε′′ ∈ {0, 0.01, 1}), with higher losses resulting in lower lifetime. Panels (a),
(b), (c) and (d) correspond to waveguide thicknesses d =∞, d = 0.1λ, d = 0.01λ and
d = 0.001λ respectively.

wave modes for a slab of hyperbolic material), causing simple numerical integration

techniques to fail. However, the zero-loss limit admits a semi-analytic solution (see

Appendix B), simplifying its treatment.

The analysis of Fig. 3.4 yields several interesting conclusions. Panel (a) allows

for a clear comparison between half-infinite metallic and hyperbolic substrates as dis-

cussed above. The τ ∼ h3 dependence for both types of materials shows clearly on

the log-log scale. Furthermore, for the case of hyperbolic medium the dipole lifetime

is independent of the amount of losses. In contrast, for a metallic substrate the dipole

lifetime is a constant (for h� λ) in the zero-loss limit, and decreases with increasing

loss (as expected from Eq. (3.18)), matching the lifetime of the hyperbolic medium

only for a relatively high loss of ε′′ ≈ 5. This suggests that excitation of propagating

high-kx waves in the hyperbolic material provides a decay channel for the emitter

that is more efficient than coupling to lossy surface waves. By examining panels (b)

and (d), we can identify two distinct regimes: h� d� λ and d . h� λ. In the first

regime, there is little difference between the waveguide systems and the half-infinite

substrate; indeed, the only readily quantifiable effect appears in the lossless limit of a

metallic substrate, where lifetime drops with decreasing d (log τ ∼ log d). Ideal loss-
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less hyperbolic waveguides, on the other hand, support an infinite number of modes

for an arbitrary thickness; this singularity in the density of states implies that in the

h� d limit the waveguide thickness has no effect on decay rates even in the case of

zero losses.

In the second regime, d . h� λ, we observe that for metallic waveguides dipole

lifetime drops relative to that of a half-infinite substrate, while for hyperbolic sys-

tems the lifetime increases. In fact, it can be shown (and is evident from the plots, in

particular, Fig. 3.4(c)) that the lifetime near a metal slab behaves as h4 [79] (hyper-

bolic medium, in contrast, retains the h3 dependence for sufficiently high losses). The

reason for this is that for hyperbolic waveguides the coupling to high-kx propagating

modes is reduced for d . h � λ, while for the metals, coupling to surface plasmon

modes becomes an important non-radiative decay channel, leading to lower lifetimes.

3.5 Conclusion

This chapter explored some of the fundamental features of hyperbolic dispersion. We

started with the familiar observation that hyperbolas are unbounded, and discussed

its implications in cylindrical geometry. We found that solutions of Maxwell’s equa-

tions could be represented as discrete angular momentum states with non-vanishing

field everywhere for arbitrarily high values of angular momentum – the behavior that

is unique to hyperbolic materials. Examining this result from the viewpoint of scat-

tering theory, we found that it readily suggest a platform for super-resolved imaging.

In addition, we can view this result as a consequence of divergent photonic density

of states, which has implications far beyond the imaging problem. Singularity in

PDOS opens the possibility for dramatically modifying emission or absorption prop-

erties of materials, leading to many possible applications in communications or energy

harvesting.
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In the next chapter, we will continue our exploration of novel devices enabled by

the hyperbolic dispersion relation. We will give a detailed account of light propagation

in HMM-filled waveguides and show that in planar nanophotonic devices, the cut-off

free nature of hyperbolic dispersion has a particular chance to shine.

56



Chapter 4

Guided waves in hyperbolic

metamaterials

4.1 Introduction

In the previous chapter, we have alluded to the importance of boundary conditions as

we consider ways in which bulk metamaterials could be fashioned into useful devices.

The simplest non-trivial boundary conditions are set up by an interface between

two half-infinite materials. Indeed, without this boundary condition many of the

basic phenomena we have studied in metamaterials (e.g. negative refraction) would

be ill-defined. Despite its simplicity, considering a single interface allowed us to learn

much about the refractive behavior of light in hyperbolic materials, and allowed us

to compute dipole fluorescence enhancement due to the presence of a metamaterial.

Most optical devices, however, are of a finite extent. Discussions of imaging or

light guiding and confinement necessarily deal with systems that are bounded in two

or three dimensions. In this chapter we will consider planar, quasi-two-dimensional

systems made of hyperbolic metamaterials that support (or can otherwise couple to)

propagating modes.
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4.2 Mirror waveguide

As a simple example, yet one that will capture many of the unusual characteristics of

HMM waveguides, let us consider guided mode solutions for a planar slab of thickness

d with perfectly conducting walls. (Since these walls are perfectly reflecting, this setup

is known as the mirror waveguide.) Suppose that the boundaries of the waveguide

lie at x = 0 and x = d, and that guided modes propagate in the z direction. We

assume that the waveguide is filled with a uniaxial anisotropic material characterized

by dielectric constants εx ≡ ε⊥ (for field components transverse to the waveguide) and

εy,z ≡ ε‖. In this case, only TM modes are affected by the anisotropy much like only

the extraordinary waves are affected by the anisotropy of bulk uniaxial media. (To

regulate the propagation of TE modes in a similar manner, magnetic anisotropy would

be required.) The solution for TM modes propagating in the waveguide described

above is [35]

E(r, t) = E0

[
−i β
ε⊥

cos(κx)x̂+
κ

ε‖
sin(κx)ẑ

]
exp[−i(βz − ωt)], (4.1)

where κ = mπ/d, and κ and β satisfy the usual dispersion relation for uniaxial

anisotropic media:

β2

ε⊥
+
κ2

ε‖
=
ω2

c2
. (4.2)

We can learn a lot about the behavior of hyperbolic waveguide systems simply

by studying how the choice of signs for ε‖ and ε⊥ affects the solutions of Eq. (4.2).

First, observe that in the isotropic case (ε‖ = ε⊥), the above expressions for the

field components and dispersion relation reduce to the familiar results for a metallic

waveguide. As is well known, the number of allowed modes in traditional waveguides
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is limited; this can be easily seen by rewriting Eq. (4.2) as

mπ

d
= κ =

√
ε‖

√
ω2

c2
− β2

ε⊥
(4.3)

and imposing the conditions that m, d be real and positive. In the isotropic case, this

implies that κ ≤
√
εω/c, which gives the following value for the maximum supported

mode mmax:

mmax =

⌊
d
√
εω/c

π

⌋
(4.4)

(b·c and d·e denote floor and ceiling functions).

This expression changes only slightly if the isotropy assumption is relaxed, but

both ε‖ and ε⊥ are assumed to be positive: we only need to replace ε with ε‖ in

Eq. (4.4). However, if the signs of ε‖ and ε⊥ differ, the situation changes dramatically.

Consider, for instance, the case {ε⊥ < 0, ε‖ > 0}. The condition for Eq. (4.2) to be

satisfied now reads κ ≥ √ε‖ω/c, leading to

mmin =

⌈
d
√
ε‖ω/c

π

⌉
. (4.5)

Rather than having a maximum mode cutoff, the guided modes are now bounded

from below. By adjusting the values of d and ε‖ it is possible to allow all modes to

propagate in a waveguide, or to elevate the minimum cut-off threshold mmin to admit

only high order modes.

Consider now the case where {ε⊥ > 0, ε‖ < 0}. It is possible to satisfy Eq. (4.3)

for any value of d and ε⊥,‖. In other words, in the idealized system, all modes always

propagate. These observations can be readily interpreted in terms of the PDOS

singularity discussed in the last chapter. The diverging density of states was entirely

due to the hyperbolic form of the dispersion relation. Here, the boundary conditions
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(a) (b) (c)
k⊥

k

Figure 4.1: Dispersion relations for a metallic waveguide with hyperbolic material
core: (a) “regular” waveguide (ε⊥ = ε‖ = 2), (b) {ε⊥ < 0, ε‖ > 0}: {ε⊥, ε‖} = {−2, 2}
(c) {ε⊥ > 0, ε‖ < 0}: {ε⊥, ε‖} = {2,−2}. Waveguide propagation vector β is plotted
in units of ω0/c.

discretize the set of allowed wave vectors for a given energy, but there is still an

infinite number of them (of course, as before, losses and patterning scale impose an

upper bound on the mode density).

In Fig. 4.1 we plot the dispersion curves of Eq. (4.2) for the three material pa-

rameter scenarios discussed above. Panel (a) depicts the familiar results for isotropic

mirror waveguides, panel (b) treats the case {ε⊥ < 0, ε‖ > 0}. The existence of mmin

andmmax for a fixed frequency ω0 can easily be seen in panels (a) and (b), respectively,

by drawing a horizontal line ω = ω0. Panel (c) illustrates the case {ε⊥ > 0, ε‖ < 0};

it is apparent that solutions exist for every mode, regardless of the frequency.

Furthermore, Fig. 4.1 shows unusual behavior of group velocity in HMM waveg-

uides. Indeed, since the group velocity for the guided modes, vg = ∂ω/∂β, corre-

sponds to the slope of lines tangent to the dispersion curves, panel (b) suggests that

the group velocity for all modes in the {ε⊥ < 0, ε‖ > 0} waveguide is negative!

Perhaps even more surprising is that for {ε⊥ > 0, ε‖ < 0} materials, the group ve-

locity can not only exceed the velocity of light inside the waveguide core, but reach

arbitrarily high values, becoming infinite for ω = 0, as evident from panel (c). These

unusual conclusions can be checked algebraically. Differentiating Eq. (4.2) we obtain
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(c)(b)(a)

Figure 4.2: Negative refraction with an HMM metallic waveguide: (a) Schematics of
a metallic waveguide showing directions of the TE and TM fields (b) Plot of the mode-
dependent effective refractive index for a waveguide with bismuth core (c) Illustration
of negative refraction inside the waveguide with an interface between bismuth and an
isotropic dielectric

∂ω

∂β
=
c2

ε⊥

1

ω/β
=
c2

ε⊥

1

vφ
, (4.6)

where vφ is the phase velocity. For ε⊥ < 0 we see immediately that the phase velocity

and the group velocity are of different signs. This explains the apparent negative sign

of the group velocity in Fig. 4.1(b). We can also understand the origins of vg > c:

when the signs of the ε tensor components differ, Eq. (4.3) shows that for any given

mode it is possible to pick values of β to make the frequency ω arbitrarily small.

Accordingly, arbitrarily small values of vφ can be attained. From Eq. (4.6) it follows

that this leads to infinitely high values of vg. [Note that in “regular” mirror waveguides

vφ can become arbitrarily large, becoming infinite at cut-off frequencies for a given

mode. This corresponds to the line β = 0 in Fig. 4.1(a).]

It is worth noting that emergence of negative group velocities can be observed by

examining the dispersion relation for bulk {ε⊥ < 0, ε‖ > 0} material and considering

the ray optics description of the mirror waveguide. Indeed, let us represent the

waveguide mode by a plane wave with wave vector k bouncing between the two

reflecting boundaries. Due to the {ε⊥ < 0, ε‖ > 0} anisotropy, the components of S

and k along the waveguide, Sz and kz, differ in sign. The guided mode is constructed
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out of the multiply reflecting plane waves; it can be seen that Sz represents the net

energy flow in the mode, while kz coincides with the mode propagation constant β.

We therefore arrive at the same conclusion as before – that the direction of the phase

fronts is opposite to the direction of the energy flow.

In this sense, the guided modes mimic the refractive behavior of magnetic (ε < 0,

µ < 0) negative-index materials. Indeed, we can rewrite the metallic waveguide

dispersion relation (4.2) as

β2
z + β2

y = ε ν
ω2

c2
, (4.7)

with ν =
(
1− κ2c2/ε‖ ω

2
)
where ε = ε⊥(ε‖) for the TM(TE) modes. The effective

refractive index for propagating waveguide modes in this system is given by n2
eff = ε ν.

To support propagating modes, ε and ν must have the same sign; in the case ε < 0,

ν < 0 the phase velocity of the waves is negative [30]; accordingly, the refractive index

is given by

neff = −
√
ε⊥ ν. (4.8)

In Fig. 4.2(b) we plot the effective index using the material parameters of bis-

muth, which is a naturally-occurring hyperbolic material for THz wavelengths (see

Sec. 2.3.1). Furthermore, if we consider the waveguide which is filled with a regular

dielectric on the left and with an ε⊥ < 0 anisotropic material on the right, we find that

a mode with propagation vector β = βyŷ + βzẑ incident on this boundary refracts

negatively. We illustrate this in Fig. 4.2, where we plot refraction of a two-dimensional

wave packet formed by the propagating modes of the waveguide. Notice that not only

the energy flow direction, but also the phase fronts reveal negative refraction, unlike

the examples we saw in Chapter 2, where negative refraction was only observed in

the Poynting vector. In these previous examples, it was the large Poynting vector

walk-off that enabled all-angle negative refraction; in contrast, here, it is the negative

phase velocity that accounts for the unconventional refractive behavior.
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The unusual features of HMM waveguides delineated above hint at many interest-

ing potential applications. First, the optical power in a given mode is proportional to

β, which, asymptotically, is linear in the mode number m. Thus, it might be possible

to concentrate unusually high fields in a subwavelength waveguide, an impossible feat

with conventional materials. Such a capability would be of great interest in developing

nonlinear devices.

Secondly, we can observe that mode profiles for high-m solutions exhibit rapid

oscillations, i.e. correspond to high spatial frequencies. Such high order modes would

be able to couple to evanescent fields of finely structured objects, which are also

characterized by high transverse spatial frequencies. These high spatial frequencies

carry the information about the object’s subwavelength features — the information

typically lost as a consequence of the diffraction limit. This ability to guide waves that

would exponentially decay in an ordinary medium is of great interest in constructing

subwavelength imaging devices.

Third, it is evident from the above discussions that idealized HMM waveguides

admit an unbounded number of modes for a fixed frequency. This means that the

density of states in such systems is, in principle, infinite. This has important impli-

cations for emission and absorption of radiation within (or in the vicinity of) HMM

structures.

Finally, the broad range of group velocities supported by HMM waveguides can

provide an avenue for designing slow and fast light devices in the solid state. It

is important to note that the hyperbolic dispersion relations in the bulk may be

considered as a non-resonant effect, which opens the possibility for higher bandwidths

and lower losses compared to the traditional ways of implementing slow light devices.
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4.3 Planar dielectric waveguides and slow light

4.3.1 Dielectric waveguide basics

Consider the waveguide with {ε⊥ < 0, ε‖ > 0}, whose modal dispersion for the

“metallic” boundary conditions yields negative group velocities [Fig. 4.1(b)]. In this

section, we will discuss effects that arise when the perfectly conducting metallic walls

of the waveguide are replaced with a dielectric cladding. The solution of this problem

is conceptually similar to that of the isotropic planar slab waveguide, which can be

found in standard textbooks [80]. Let us review the key features of the slab waveguide:

− For a given frequency, a finite number of modes is supported. The cut-off mode

number is determined by the waveguide thickness. The m = 0 mode is always

supported.

− The group velocity of the modes lies between the velocity of light in the core

and the cladding: vcladding < vg < vcore. Note that higher order modes travel

slower, which is not the case in metallic waveguides.

− The above modal dispersion can be explained using the Goos-Hänchen effect:

the lateral shift of a mode’s classical ray trajectory can be associated with a

velocity which decreases with increasing mode number.

What happens to the group velocity of a mode when vcore becomes negative?

In this case, energy flux in the core is antiparallel to the wave vector. However,

the energy flux in the waveguide cladding (which we assume to be made of regular,

isotropic dielectric) is, as usual, collinear with the wave vector. It has been suggested

by Engheta that balancing positive energy flux in a dielectric with negative energy

flux in a DNG material (i.e. medium with simultaneously negative values of dielectric

permittivity and magnetic permeability) can be used to effectively slow the group

velocity of propagating modes, creating a “resonator without mirrors” [81]. Indeed,
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these considerations also hold for HMM waveguides. As we shall see, there exists a

value of the light frequency ω (and the waveguide thickness d) such that the negative

energy flux inside the waveguide is nearly balanced by the positive energy flux outside,

leading to a dramatic suppression of the signal velocity.

4.3.2 Slow light in TM modes using ε anisotropy

We first solve the general problem of TM wave propagation in a planar waveguide

with uniaxial core. The electric field in the three regions of the waveguide can be

expressed as

~E1 = (Axx̂+ Az ẑ) e−κ1xe−ikzz (9a)

~E2 = [(Bx sin kxx+ Cx cos kxx) x̂+ (Bz sin kxx+ Cz cos kxx) ẑ] e−ikzz (9b)

~E3 = (Dxx̂+Dz ẑ) eκ3xe−ikzz. (9c)

Requiring continuity at the boundaries and compliance with Maxwell’s equations,

we can obtain the guidance condition in the form

κi
εdi

= fj(kx, kz;κj), (10)

where (i, j) ∈ {(1, 3), (3, 1)} and

fj(kx, kz;κj) =

(
kx
εz

)(
εdjkx − εzκj cot kxd

εzκj + εdjkx cot kxd

)
.

Dispersion relations in the three regions are
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k2
z

εx
+
k2
x

εz
=

ω2

c2
(11)

k2
z − κ2

i

εdi
=

ω2

c2
, i ∈ {1, 3}. (12)

For the case εd1 = εd3 ≡ εd these equations can be combined as

κ2

εx
+
k2
x

εz
=

(
1− εd

εx

)
ω2

c2
, (13)

while the guidance condition becomes

κ = kx
εd
εz


tan kxd

2
(odd modes)

− cot kxd
2

(even modes).
(14)

Finally, kx may be expressed through kz and ω using Eq. (11). We thereby obtain

a set of transcendental equations, which may be solved graphically or numerically to

yield ω vs. kz dispersion curves.

A particular feature of an anisotropic waveguide is that propagating TM modes

can exist for various sign combinations of εx and εz. For εx, εz > 0 the modes resemble

those in an isotropic waveguide, while for εx, εz < 0 propagating solutions vanish. If

only one of the εx, εz is negative, propagating solutions exist, and their behavior is

strongly affected by the altered character of the dispersion relation.

The most prominent impact results in the case εx < 0, εz > 0. As discussed

in the previous section, this leads to Sz = S < 0, i.e. negative energy flux in the

waveguide core. This choice of signs for εx and εz has additional implications for the

modes, as evident from Eq. (13). When εx > 0, this equation describes an ellipse.

Consequently, simultaneous solutions of Eqs. (13) and (14) are possible only for a
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Figure 4.3: Dispersion curves for TM modes of the slow light waveguide (neglecting
material dispersion). (a) {εx < 0, εz > 0}; (b) {εx > 0, εz < 0}. Light lines in air
and in the waveguide are shown as straight lines.

range of kx values up to some cut-off transverse wave vector kx max (this reflects the

fact that high kx modes of dielectric waveguides cannot meet the guidance conditions).

However, as discussed in the previous section, when εx < 0, Eq. (13) describes a

hyperbola. Arbitrarily large values of kx can now satisfy Eq. (13) and simultaneously

solve Eq. (14). We see that this waveguide has no large kx cutoff (instead, there exists

a minimum allowed value of kx). Finally, we note that no-cutoff mode solutions are

also possible for the case εx > 0, εz < 0, in which case Eq. (13) is still hyperbolic,

but with κ as the major axis coordinate.

In Fig. 4.3 we plot dispersion curves of the guided modes resulting from solving

Equations (13) and (14) (with a negative value of the transverse permittivity εx). In

panel (a) we consider the {εx < 0, εz > 0} anisotropy. For every guided mode we

observe regions with both positive group velocity (most of the energy travels in the

waveguide cladding) and negative group velocity (most of the energy is in the core).

Furthermore, it is evident that for each mode there exists the value of the signal

frequency ω0 corresponding to an extremely strong suppression of the group velocity.

Panel (b), which illustrates the {εx > 0, εz < 0} anisotropy, shows the unbounded

nature of the modes with increasing kx, but no slow light modes.

While Fig. 4.3 provides a useful qualitative illustration of low group velocity modes

in HMM waveguides, realistic models of such devices must take into account the dis-
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persive and lossy nature of materials. As discussed in Chapter 2, there exist several

possible realizations of {εx < 0, εz > 0} materials, the simplest of which is a planar

stack of alternating plasmonic and dielectric layers. As we saw, the negative permit-

tivity of plasmonic layers can be obtained from free carriers (in the case of highly

doped semiconductors or metals), or from phonon resonances. In our model of the

layered waveguide core, we choose silicon carbide (which falls into the latter group)

as the ε < 0 component of a planar metamaterial. SiC is a wide bandgap, environ-

mentally robust semiconductor with multiple existing and prospective applications

in optoelectronics, power electronics, MEMS, sensors, and, of course, metamateri-

als [56, 57]. Its dielectric function is given by

εSiC = ε∞
ω2 − ω2

LO + iγω

ω2 − ω2
TO + iγω

, (15)

where ωLO=972 cm−1, ωTO=796 cm−1, ε∞ = −6.5, and γ=5 cm−1 [57, 82]. The

resonant behavior results in εSiC < 0 for the wavelengths of 10.3 – 12.5 µm. Ac-

cordingly, we model the anisotropic waveguide core as a metamaterial composed of

interleaved SiC and SiO2 (ε ' 3.9) layers [Fig. 4.4(a)], with the SiC volume fraction

Nc=50%. The dispersive dielectric functions of the layered composite are illustrated

in Fig. 4.4(b). For wavelengths between 10.3 and 11 µm we find the {εx < 0, εz > 0}

region; we denote the center of this frequency interval as ω∗.

In Fig. 4.5(a) we plot the numerically calculated guided mode dispersion curves

of the air-clad (εd = 1) waveguide with the SiC/SiO2 metamaterial core. Values of

ω/ω∗ & 1.1 (λ . 10.3 µm) cover the region where ε′x, ε′z > 0. The mode disper-

sion curves in this region correspond to the usual guided TM modes of a dielectric

waveguide. Curves in the range 0.85 . ω/ω∗ . 0.9 (λ = 11 – 12.6 µm) represent

the ε′x > 0, ε′z < 0 modes, which we do not treat here. Finally, the spectral region
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Figure 4.4: (a) Proposed implementation of the slow light waveguide: the core
presents a planar stack of SiC/SiO2 layers, with layer thickness d� λ. (b) Dielectric
constants (real parts) for the SiC/SiO2 stack. Shaded region indicates the regime
where εx < 0, εz > 0.
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Figure 4.5: (a) Dispersion curves for a waveguide with air cladding (εd = 1) and
SiC/SiO2 metamaterial core. The characteristic planar waveguide dispersion curves
are evident in the region ω/ω∗ & 1.1, where ω∗ is the center of the {ε′x < 0, ε′z > 0}
region. (b) Negative index modes in the {ε′x < 0, ε′z > 0} region. (c) Magnitude of
the group velocity of the fourth order negative index mode [indicated by the arrow in
(b)]. Shaded region indicates . 10% relative change in group velocity. The spectral
width of this region is 390 GHz.

0.9 . ω/ω∗ . 1.1 (λ = 10.3 – 11 µm) corresponds to ε′x < 0, ε′z > 0 – the requirement

for negative index modes.

This region is examined in Fig. 4.5(b). We note that the dispersion curves of

modes in the figure appear qualitatively similar to those of interface plasmon or

phonon polaritons of a negative permittivity slab [83, 84]. However, the structure of

the modes in our system is markedly different from that of slab-guided polaritons.

Guided modes of Fig. 4.5(b) are essentially bulk states and, as such, their dispersion

characteristics do not depend on the thicknesses of individual layers.
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Frequency-dependent group velocity of a single slow mode [indicated by arrow in

Fig. 4.5(b)] is plotted in Fig. 4.5(c). We obtain vg . 0.004c over a 1.1 THz frequency

range. Such wide bandwidth suggests the possibility of using the proposed system as

an optical buffer. Assuming operation around the point of zero second-order disper-

sion and restricting group velocity deviation from that point to less than 10% (shaded

region in the figure), we obtain a usable data transmission bandwidth of 390 giga-

bits per second, with the required device length of 14.4 µm for a 4-bit buffer. These

parameters are comparable to operational characteristics of most currently proposed

solid state slow light devices, in particular, those based on electromagnetically in-

duced transparency and coupled resonator systems [85]. The combination of large

data bandwidth and compact device size exhibited by our system is similar to that

of the recently proposed plasmonic slow light waveguides [83]. Like the plasmonic

devices, our system is strongly limited by losses (∼ 4 dB/µm). It should be noted

that our device exhibits somewhat lower losses while attaining slower group velocities

than the plasmonic slow light structures [83].

4.3.3 Slow light in TE modes using µ anisotropy

Up to this point, the discussion of hyperbolic metamaterials was restricted to non-

magnetic systems with strong natural or artificially induced anisotropy of the di-

electric tensor. The motivation for this is the fact that homogenization theory of

dielectrics has been extensively studied, and that the effective medium approxima-

tion for dielectrics often offers a straightforward way to capture the key physics of a

HMM system. All features of hyperbolic materials, however, could be implemented

with an appropriate anisotropy of the magnetic permeability. Furthermore, there

exist material systems where such magnetic anisotropy is easier to attain than the

dielectric anisotropy. Although we will not go into details here, it is trivial to recast

the results derived above into a form appropriate for magnetic systems. It is easy to

70



see that just like only the TM modes of planar waveguides are affected by dielectric

anisotropy, uniaxial magnetic anisotropy is “felt” by the TE modes only. From the

symmetry of Maxwell’s equations we can conclude that for homogeneous media, TM

mode solutions for the H field take the same form as the TE mode solutions for the

E field, provided the ε and the µ tensors are interchanged. Such solutions are impor-

tant for certain metamaterial designs (e.g. “fishnet” structures [86]), where in-plane

and out-of-plane magnetic response strongly differ.

4.3.4 Slow light in hyperbolic bilayers

The previous sections described the emergence of slow group velocity modes in waveg-

uides where the energy flux in the core and the cladding have opposite signs. In the

ray optics picture, the slow group velocities could also be explained by a negative

Goos-Hänchen shift as the guided rays undergo total internal reflection at the core-

cladding interface. The fields in the cladding – responsible for the “positive” energy

flux – are simple decaying exponentials. It is natural to ask whether better control

over slow light behavior could be achieved with a more sophisticated waveguide struc-

ture, which can afford greater variety in the functional form of the positive energy

flux fields.

Recalling an earlier discussion of propagation criteria in HMM waveguides, we can

observe that both εx > 0, εz < 0 and εx < 0, εz > 0 scenarios lead, in the idealized

case, to modes with an arbitrarily high value of propagation constant β, but with

different signs of group velocity. We can conjecture that by constructing a waveguide

out of two layers, each corresponding to a different type of hyperbolic material [87],

one might achieve low energy velocity modes, with properties different from those in

simple HMM waveguides considered in previous sections. To demonstrated this, we

will write down the expressions for modes in such hyperbolic bilayers and study the

associated dispersion relations.
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The procedure for determining modes in the case of dielectric boundary condi-

tions is straightforward, if tedious. We have three interfaces; the unknowns are the

five coefficients of the field Ansatz, as well as κ, kz1, and kz2. Using the boundary

conditions for the E‖ and D⊥ fields, all the coefficients can be determined in terms

of system geometry and material parameters; the boundary condition equations can

then be combined into one:

kz1εx1

[
tan (d2kz2)

(
κ2ε2x2 − k2

z2

)
+ 2κkz2εx2

]
−

− tan (d1kz1)
[
κ tan (d2kz2)

(
k2
z2ε

2
x1 + k2

z1ε
2
x2

)
+ kz2εx2

(
k2
z1 − κ2ε2x1

)]
= 0, (16)

where we assumed that the medium on the boundaries of the bilayer is vacuum (ε = 1).

Together with the standard dispersion relations,

k2
x

εz1
+
k2
z1

εx1

=
ω2

c2
(17a)

k2
x

εz2
+
k2
z2

εx2

=
ω2

c2
(17b)

k2
x − κ2 =

ω2

c2
, (17c)

Eq. (16) yields an implicit solution for the mode dispersion curves ω(kx). These

solutions must be studied numerically.

Note that the solutions of single-layer hyperbolic waveguides studied in the pre-

vious section are special cases of a two-layer system with one of the thicknesses set

to zero. Accordingly, it is interesting to study the bilayer dispersion curves for a

fixed device thickness d, as the ratio of individual layer thicknesses d1 and d2 interpo-

lates between these two limiting cases. In Fig. 4.6 we plot the numerical solutions of

Eq. (17) as the d1 : d2 ratio is varied between 1:9 and 9:1. We see that the waveguide

modes indeed interpolate between the limiting behaviors previously seen in Fig. 4.3.

The manner in which this evolution happens is rather interesting. Regardless of
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(a) (b) (c)

(d) (e) (f)

Figure 4.6: Dispersion curves for a hyperbolic bilayer waveguide ({ε(1)
‖ , ε

(1)
⊥ } =

{5,−5}, {ε(2)
‖ , ε

(2)
⊥ } = {−5, 5}) with dielectric boundary conditions as layer thickness

ratio is varied from 1:9 to 9:1

whether we start with the limit d = d1 or d = d2, as d1 (or d2) decreases due to the

presence of another layer, the spacing between the waveguide modes grows – just as

it would if we were to reduce the thickness of a single-layer device. The mode curves,

however, start to become distorted. We can visualize what happens by imagining

taking the two limiting cases, with the ω(k) curves given by Fig. 4.3 (a) and (b) [or

by Fig. 4.6 (a) and (f)], and imagining weakly coupling those two waveguides. We

expect the mode structure to start developing avoided crossings. Because for each

branch in the dispersion relation, many avoided crossings arise, the resultant curve

has many inflection points, as well as maxima and minima. For an appropriate device

thickness, these extrema correspond to the slow light points, ∂ω/∂k = 0. We have

created a situation where in a small frequency range, many slow light modes can

exist simultaneously. Indeed, since a slow light mode can emerge at every avoided

crossing point, and since the number of these points is, ideally, infinite, this implies

that an infinite number of zero group velocity points exists in our bilayers! This

stands in contrast to the “ordinary” slow light waveguide considered before, where

for high enough frequencies, due to increased light confinement within the core, the
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core-cladding flux balance condition could no longer be achieved, limiting the slow

group velocity behavior to only a handful of modes.

The analysis of modal structure that we have performed allowed us to understand

the properties of guided waves in hyperbolic nanophotonic structures. We can now

use this insight to study the interactions of these structures with external fields. In

particular, we can treat the problem of transmission and reflection through planar

structures and discuss their potential imaging applications.

4.4 Hyperbolic slabs and imaging

Transmission and reflection characteristics are central to the studies of all optical

devices and materials, and we have already discussed certain features of light trans-

mission through hyperbolic metamaterials in both half-infinite and planar slab con-

figurations. In particular, we demonstrated the negative refraction of the Poynting

vector at an HMM interface. We also used the Fresnel reflection coefficient for a slab

to explore the effects of coupling to waveguide modes on the radiative decay rates.

In this section, we would like to elaborate on certain aspects of light transmission

through hyperbolic slabs and their potential for super-resolution imaging.

The transmission function of a slab (or, indeed, any planar structure) can be easily

computed using the transfer matrix approach (see Appendix C). For a single-layer

anisotropic system, the result (for TM modes) is

T (kx) =
2e2ihkz0 csc (dkz1)

2 cot (dkz1)− ikz0ε‖
ε0kz1

− iε0kz1
kz0ε‖

kz0 =

√
ω2

c2
− k2

x

kz1 =

√
ε‖
ε⊥

(
µ1ε⊥

ω2

c2
− k2

x

)
.

(18)
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(a) (b) (c)

Figure 4.7: (a) Typical field transfer function of a hyperbolic slab. (b,c) Comparison
of field transfer functions for impedance-matched slabs of thickness λ/2 with losses
given by ε′′ = 10−4 (panel b) and ε′′ = 0.1 (panel c). The input and output planes
are located at h = d/2 (traditional superlens arrangement). Lines correspond to
different metamaterial types. Green/circles: Pendry’s superlens (ε′ = µ = −1);
red/squares: “poor man’s superlens” (ε′ = −1, µ = 1); blue/diamonds: hyperbolic
slab (ε′⊥ = −1, ε′‖ = 1); orange/triangles: free space (ε = µ = 1, no losses).

Because this equation maps spatial frequencies kx from the input to the output plane,

we also refer to it as the transfer function. We assume that the fields originate at a

distance h in front of the slab (measured from the front surface), and are detected the

same distance h behind the slab (this accounts for the e2ihkz0 factor in the numerator).

The special case of Eq. (18) with ε‖ = ε⊥ = µ1 = −1 is the famous superlens

transfer function. For h = d/2 we get T = 1 for every value of kx. This picture changes

dramatically if we introduce loss into the system. In particular, if the dielectric

function is taken to be ε1 = −1 + iδε, |δε| � 1, T (kx) experiences exponential roll-off

past the location of the pole:

kmax
x ≈ 1

2d
(1− 2 log |δε|). (19)

In the ideal lossless case, this pole moves to infinity, and the transfer function remains

constant everywhere.

For a hyperbolic material, the denominator of Eq. (18) features an infinite number

of poles, which correspond to coupling with the propagating modes inside the slab.

For low losses, the behavior of the transfer function is dominated by these peaks

[Fig. 4.7(a)].
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It is interesting to compare the high-kx behavior of transfer functions for the

ideal superlens, “poor man’s” superlens, and a hyperbolic slab with similar material

parameters and the same amount of losses. We perform this comparison in Fig. 4.7(b)

and (c), with the general form of the dielectric function given by ε = ±1+ i ε′′. Losses

were fixed at ε′′ = 10−4 (panel b) and ε′′ = 0.1 (panel c). Examination of these curves

reveals that in all cases, the dominant behavior of the transfer function is due to

free-space decay of evanescent waves. In the case of the superlens, for small enough

losses, resonant plasmonic excitations exactly compensate for that decay. However,

past the cut-off value for kx given by Eq. (19), it becomes impossible to couple to the

plasmon resonances, and the exponential fall-off of the signal once again dominates.

In the case of “poor man’s” superlens (i.e. a metallic slab with no magnetic re-

sponse), the induced plasmon oscillations are not enough to fully compensate for the

free-space decay. Whereas in the ideal superlens, the degenerate resonant plasmons

induce exponential enhancement of the field (which makes such compensation possi-

ble), to leading order, in the “poor man’s” superlens this enhancement obeys a power

law: T (kx) ∝ exp(−2dkx)k
4
x, where exp(−2dkx) is the usual free-space decay. This

is enough to make it perform noticeably better than vacuum, as experiments have

shown [61, 88], but approaching the performance of an ideal superlens is not feasible.

Hyperbolic slabs stand out in these plots rather favorably, since their transfer

functions diminish half as fast with increasing kx. The reason for this is simple:

in the traditional superlens arrangement, exactly half of the space between input

and output planes is filled with the metamaterial. In hyperbolic slabs, high-kx waves

propagate (with attenuation governed by material absorption). This effectively halves

the distance over which the evanescent waves decay.

The second feature of the hyperbolic transfer function is the presence of multiple

poles. As often happens in scattering theory, we can relate these poles to internal

bound states of the system: in this case, it’s the waveguide modes. A convincing
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Figure 4.8: Transfer function resonances in the vicinity of the slow light mode for a
single-layer waveguide

Figure 4.9: An ensemble of slow-light resonances in a bilayer waveguide

illustration of this is shown in Fig. 4.8 and Fig. 4.9, where we compute transmission

function of a single and double-layer slow light waveguide of thickness λ/2. We fix

the operating frequency as indicated by the dashed horizontal lines in the figures,

and plot the transmission. Indeed, we see that for values of kx where the waveguide

dispersion relation indicates the presence of a mode, a transmission peak occurs. It

is particularly interesting to examine the case of a slow light bilayer waveguide, in

which for a fixed frequency, multiple slow light points exist. Looking at the transfer

function, it is apparent that multiple slow light modes excite many closely-spaced

transmission resonances. Because the resultant effective width of the resonance in kx

space far exceeds the width associated with “regular” hyperbolic transmission poles,

which may further improve imaging performance of hyperbolic slabs.1

1We should note that the case of a perfectly impedance matched bilayer was treated in Ref. [87],
where such an arrangement was found to suppress the transfer function poles. The bilayer waveguide
regime evolution plots in Fig. 4.6 can hint at the mechanism behind this: under the right conditions,
the first intersection of a waveguide mode and a line ω = const can occur at an arbitrarily high value
of kx.
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4.5 Conclusion

We have seen earlier, by considering a single interface, that the {ε⊥ < 0, ε‖ > 0}

materials enable all-angle negative refraction for incident plane waves. However, for

guided modes, this form of the dielectric tensor results in negative phase velocities

and even negative group delays – phenomena that used to be primarily associated

with magnetic (εx < 0, µ < 0) negative index materials [89].

We have demonstrated that a planar anisotropic waveguide with negative trans-

verse permittivity supports slow light modes. Such modes are made possible by the

balance of positive energy flux in the cladding and negative energy flux in the core.

Recognizing that a planar lens is simply a waveguide turned on its side, we pro-

ceeded to study the transfer functions of hyperbolic slabs, comparing it to the thor-

oughly studied problem of Pendry’s superlens, both in its ideal variant, as well as in

the form of the non-magnetic “poor man’s” superlens. We found that the propagating

nature of waves in HMMs means that the optical path length over which those waves

decay is less, and in that sense they may be considered superior to the other planar

lenses considered. Further performance enhancement for imaging may be found by

exploiting the resonant coupling to the slow light modes in a single layer or bilayer

configuration.

All these devices and methods merely help amplify or guide evanescent waves; as

soon as they enter free space, they once again suffer from exponential decay. Yet

we have seen in Chapter 3 that it is possible to convert evanescent waves into prop-

agating ones; the hyperlens accomplishes this, effectively, by means of geometrical

magnification. In the following chapter we will describe an alternative way to retrieve

information from evanescent waves by scattering them into the far field. Although

we will not be utilizing hyperbolic dispersion relation, our discussion will be informed

by insights into subwavelength imaging, scattering, and anisotropic nanostructures

obtained in the earlier chapters.
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Chapter 5

Subwavelength resolution: alternative

approaches

5.1 Introduction

In previous chapters we examined the applications of metamaterials in the areas

of imaging, wave guiding, and radiative decay engineering. Many novel properties

described above, as well as by other researchers, derive their existence from specific

resonances enabled by the particular combinations of material parameters and device

geometry. For example, we have explored the coupling of radiation to plasmons, slow

light modes, and cut-off free whispering gallery modes. The fruitfulness of studying

resonances is, perhaps, obvious given their central importance in all systems governed

by the wave equation.

In this chapter, we will focus on a different set of tools, of equally profound

importance in studying wave phenomena: the scattering of waves. In particular,

we will explore scattering as a means of broadening the accessible spatial frequency

spectrum beyond the usual diffraction cutoff. Our approach can be motivated, in part,

by observing that “classical” optical elements that manipulate the spatial frequencies
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may be broadly classified into refractive and diffractive devices [43]. In many cases,

both of these device classes can be utilized for similar purposes – for instance, prisms

and gratings both perform spectral decomposition, thin lenses and Fresnel lenses are

both used for focusing, and mirrors and Bragg reflectors both redirect light. In a

similar vein, we might ask whether some operational features of the hyperlens or

the superlens – both of which can be traced to classical refractive devices – can be

implemented in the context of diffractive optics.

As our departure point, we will recall the eigenmode representation of the hy-

perlens described in Section 3.2. High-order hyperlens modes effectively couple high

spatial frequency field variations on the inner surface of the device to lower spatial

frequency waves on the outer surface. Indeed, this is conceptually similar to the

manner in which a conventional magnifying lens operates. The striking difference,

however, comes from the fact that modes of an ideal hyperlens do not suffer from

diffraction-induced cut-offs, enabling the high order modes to become extra informa-

tion channels that can be used for probing subwavelength structure. It is natural to

ask what other methods might exist for converting high spatial frequencies to lower

ones, and diffraction provides one natural answer.

It is well known from Fourier optics that fields passing through an idealized grating

with periodicity d have their spatial frequencies shifted by a multiple of the grating

vector q = 2π/d:

k′x = kx + jq, j=...,-1,0,1,...,

where k′x and kx are the transmitted and incident transverse wave vector components.

It is important to note that this formula is valid for both evanescent and propagating

waves. This implies that if the grating is placed in the near field of some object,

then for a sufficiently large value of q, the evanescent components of the object’s

spatial spectrum (|kx| > ω/c) can be scattered into the propagating waves with

|k′x| = |kx − q| < ω/c. These fields can then be studied using conventional optics.
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This basic idea was proposed and subsequently demonstrated by Durant et al., who

called their approach the far field superlens (FSL) [90]. Although these experiments

were an important proof-of-principle step, they also uncovered several deficiencies

inherent in the simple strategy described above that the FSL fails to overcome. First,

the FSL essentially presents a grating etched in a plasmonic near-field superlens of

the sort described in Section C.2. As such, it is a strongly dispersive and lossy

device. More importantly, however, from the relation |k′x| = |kx − jq| (where j

is the diffraction order), it is obvious that there will always be transmitted spatial

frequencies that result from an overlap of two or more diffraction orders – consider,

for instance, the case kx = 0, j = 0; kx = q, j = 1; kx = −q, j = −1. Here, three

distinct spatial frequencies contribute to the signal at k′x = 0. In addition, the spatial

frequency spectrum is merely shifted, it is not compressed; the amount of the shift is

fixed for each manufactured grating. This means that if, for instance, the effective

passband of the original optical system is the usual [0, 2π/λ], and the spectrum were

to be shifted by 2q = 4π/λ, then the effective passband becomes [2π/λ, 6π/λ]. The

3× improvement in resolution comes, at best, at the expense of losing information

about features larger than λ/2π. In practice, the passband must be made even smaller

in order to minimize the effects from interference of the multiple diffraction orders,

even in an idealized system.

This comes in sharp contrast with the characteristics of the hyperlens. Whereas

the latter opens up new information channels that can carry subwavelength informa-

tion, the FSL must discard a portion of the original spectrum.

In the next section, we will describe an alternative approach to far-field imag-

ing and spectroscopy of subwavelength structures, based on a device that converts

mid-IR evanescent waves to propagating waves via scattering on acoustic phonons.

These scattered and frequency-shifted waves can be easily decoupled from the exist-

ing propagating spectrum that forms the regular diffraction-limited image, and with
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minimal processing can be used to distinguish subwavelength features. Furthermore,

the ability to dynamically tune the period of the acoustic grating makes this system

more robust and flexible compared to the FSL approach.

In further sections, it will be shown that the idea of acoustic modulation and

the associated frequency shifts goes far beyond fixing operational deficiencies of the

FSL and, indeed, provides a rich playground for subwavelength imaging, detection,

and fingerprinting in the optical spatial frequency domain. We will describe a device

that can perform subwavelength holographic imaging, as well as a hybrid device that

borrows ideas from both the fixed-grating approach, as well as the phonon scattering

approach, and can be used for subwavelength fingerprinting.

5.2 Super-resolution via scattering on phonons

5.2.1 Motivation

The first system we will describe arose out of a desire to construct a super-resolution

system that operates in the mid- to far-IR, as well as terahertz parts of the spec-

trum. Such a system would present a solution to an important technological problem

and open new possibilities in imaging, spectroscopy, and detection. Indeed, while the

mid-IR and THz spectral bands are extremely important in chemical analysis [91, 92],

the usual λ/2 diffraction limit severely constrains the spatial resolution of any IR or

THz imaging setup. In particular, the scale of the smallest resolved features in bi-

ological samples is comparable to the size of cells (5-30 µm). To perform imaging

of sub-cellular chemistry and other nanoscale processes in the IR, super-resolution

is required. Moreover, it should be emphasized that the potential impact of such

super-resolution systems goes far beyond simple imaging applications. For example,

in cellular biology, relative localization or relative distribution of organelles can re-

veal important information about cellular processes. As a result, much of the current
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super-resolution research focuses not on “super-imaging,” but on the various optical

and statistical techniques to precisely locate fluorescent markers attached to struc-

tures of interest [93]. We can see, therefore, that detection of high spatial frequencies

is a fundamentally important problem in its own right, with imaging being just one

of its applications.

To construct a super-resolution system in mid-IR, we start with a diffraction

grating approach, outlined in the previous section. In order to shift high spatial

frequency components into the propagating part of the spatial spectrum, the grating

vector q must be commensurate in magnitude with the spatial frequencies we wish to

study. More precisely,

q ≥ kx − ω/c. (5.1)

For example, to double the resolution relative to the diffraction limit, one must pick

q ≈ ω/c. For mid-IR, this means that the grating period should be of the order of

a few microns. It is easy to see that this distance closely matches the wavelength

of high-frequency ultrasound phonons. Indeed, assuming sound propagation velocity

v ∼ 5000 m/s and ultrasound frequency f ∼ 500 MHz, we have λphonon = v/f ∼

10 µm.

Acoustic gratings have several significant advantages over microfabricated ones.

First, the gratings are easily tunable, which leads to a great deal of flexibility in the

experimental design. For example, the system may be optimized for studying a par-

ticular range of spatial frequencies by tuning the grating through a particular range

of acoustic frequencies. Second, the diffracted waves are shifted by the acoustic fre-

quency due to the energy and momentum conservation of phonon-photon scattering.

This means that the high spatial frequencies shifted into the propagation band by

scattering are spectrally separated from the existing propagating waves. These prop-

erties of acoustic gratings solve some of the major problems we identified with the

nanofabricated far-field superlens: the interference between diffraction orders and a
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Figure 5.1: Schematics of the proposed super-resolution Fourier spectroscope

limited spatial frequency passband, fixed by the grating period. The phonon grating,

in addition, requires no nanofabrication; the device would draw on decades of research

in acousto-optic materials.

5.2.2 Proposed setup

The proposed super-resolution Fourier sensing system is shown in Fig. 5.1. The object,

placed in the near field of an acousto-optic modulator (AOM), is illuminated by a

plane wave from a mid-IR or THz source. The object scatters the illumination into

waves with various transverse wave vector components kx. These waves immediately

enter the acousto-optic medium, where a phonon grating is set up by a running

acoustic wave at frequency Ω. Due to scattering on the acoustic waves, the transverse

wave vector kx of the incident radiation is shifted by integer multiples of q, while its

corresponding frequency is shifted by integer multiples of Ω. This implies that for

a sufficiently large q, the evanescent components of the object’s spatial spectrum

(|kx| > ω/c) can be scattered into the propagating waves with |k′x| = |kx − q| < ω/c.

As discussed above, these waves will be shifted in frequency by the acoustic frequency

Ω. The amplitudes and phases of these waves still carry the same information about
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the fine spatial structure of the object as the original evanescent fields. Upon reaching

the far field detector, the scattered waves will interfere with the illuminating radiation,

producing a beat note photocurrent of frequency Ω, which can be retrieved using a fast

lock-in amplifier. The high spatial frequency information therefore can be uniquely

recovered in the far field without interfering with the existing propagating spectrum.

Assuming q & ω/c, we have Ω & vω/c = 2πv/λ, where v is the sound velocity in

the acoustic medium, and λ is the wavelength of illuminating radiation. With the

typical sound velocity in solids of 5.5× 103 m/s, the required acoustic frequency for

λ=10 µm is Ω & 550 MHz, which is within the range of fast RF transducers. For

terahertz wavelengths, the needed acoustic frequency is correspondingly lower.

5.2.3 Mathematical description

We model our system as a dielectric slab with surface normal in the z direction.

We further assume that the back facet of the slab has been treated to minimize

multiple reflections inside the slab, which we neglect in our calculations. The object

under study is immediately adjacent to the slab and is illuminated with a plane

wave E0e
i(k·r−ωt) = E0e

i(k0z−ωt). Planar acoustic wavefronts propagate along the x

direction throughout the bulk of the slab. Due to the photoelastic effect [94], this

results in a sinusoidal modulation of the dielectric permittivity:

ε(x) = ε+ ∆ε cos(qx− Ωt), (5.2)

which corresponds to a weak spatiotemporal volume grating.

We may write the general form of the field inside the grating as a sum over the

discrete diffracted orders:

E =
∑
j

Aj(z) exp[i(kx + jq)x− i(ω + jΩ)t]. (5.3)
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Plugging this Ansatz into the usual source-free wave equation, we obtain a simple

recursion relation between the various scattered components of a particular kx mode:

A′′j (z) + k2
zj
Aj(z) = −∆ε

2c2
ω2
j [Aj−1(z) + Aj+1(z)], (5.4)

where kzj =
[
εω

2

c2
− (kx + jq)2

]1/2

, and ωj ' ω.

The amplitude of the jth diffracted order, Aj, is proportional to (∆ε)j, with

∆ε/ε � 1, allowing to ignore higher order terms (j ≥ 2). We can, furthermore,

conclude that the amount of energy scattered into the shifted waves is small, thereby

permitting to neglect the variation of 0th diffracted order A0 (the undepleted pump

approximation). We note that for propagating waves, this conclusion is valid insofar

as there exists no Bragg matching between the incident and diffracted waves. Since

the phonon wave vector q is a tunable parameter in our model, it is always possible

to pick a range of q values to ensure minimal energy loss in the incident wave. For

the evanescent waves, the undepleted pump approximation is justified by the small

interaction length.

Keeping terms up to first order in Eq. (5.3), we see that a plane wave with trans-

verse wave vector kx inside the slab acquires “sidebands” with spatial frequencies

k±x = kx ± q:

E = A0 exp[i(kxx−ωt)]+A+(kx) exp[i(k+
x x−(ω+Ω)t)]+A−(kx) exp[i(k−x x−(ω−Ω)t)].

(5.5)

We can now relate the spatial frequency spectrum entering the slab (Ein(kx)) to the

spectrum at the output:

Eout(kx) =
[
Ã− exp(iΩt) + Ã+ exp(−iΩt) + Ã0

]
exp[i(kxx− ωt)], (5.6)
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where we define Ã± = A±(kx ∓ q) = t±Ein(kx ∓ q); Ã0 = t0A0. Here, t0 is a

transmission coefficient, while t± capture both generation of phonon-scattered waves

as well as the transmission characteristics of the dielectric structure:

t0 =
2
√
ε
√

(ω/c)2 − k2
x

ε
√

(ω/c)2 − k2
x +

√
ε(ω/c)2 − k2

x

; (5.7)

t± = t0
∆ε

2

(ω
c

)2 1

q(q ∓ 2kx)

ε
√

(ω/c)2 − k2
x +

√
ε(ω/c)2 − (kx ∓ q)2

ε
√

(ω/c)2 − k2
x +

√
ε(ω/c)2 − k2

x.
(5.8)

We note that for q ≈ 0, as well as q ≈ ±2kx, the perturbative treatment of Eq. (5.4)

breaks down. As we shall see below, these regions also correspond to poor noise

performance of this system, and thus are to be avoided in experimental setting.

For most choices of q, however, the output spectral component with spatial fre-

quency kx can be related to the input components with spatial frequencies k′x ≡ kx±q.

For values of q such that |k′x| > ω/c, the input spectrum corresponds to subwavelength

spatial features, which cannot be retrieved using ordinary methods.

Equations (5.6), (5.7) and (5.8) explicitly demonstrate that the high spatial fre-

quencies propagate to the far field, and are spectrally separated from the existing

signal in the “ordinary” optical passband. However, we can also see that the effective

transfer function for these components is somewhat complicated and, furthermore,

that care must be taken to decouple “upshifted” and “downshifted” waves.

We now proceed to describe in greater detail the procedure for reconstructing the

high spatial frequency components of the input spectrum. We will start by discussing

a computational method to reconstruct the data, as well as its limitations. Further

on, we show that much information can be derived from using signal “as is”. In

Section 5.2.7 we describe how an addition of another frequency-shifted optical signal

can enable direct unambiguous reconstruction of both the amplitude and the phase

of the incident field.
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5.2.4 Reconstruction of the input spectrum via iterative com-

putation

Light scattered by the acoustic grating is analyzed using a Fourier optics setup [the

simplest such system being a lens with a photodetector array in its focal plane [43], as

illustrated in Fig. (5.1)]. We assume that the system has unity numerical aperture, i.e.

values of kx in the range [−ω/c, ω/c] are accessible. The photodetector cells obey the

usual square law. The output of the detector array is thus proportional to the incident

intensity at the given spatial frequencies. The object under study is illuminated by

a plane wave Aieik0z, which has the amplitude Ãi in the detector plane. There it

interferes with waves Ã0 scattered by the object and waves Ã± scattered by both the

object and the acoustic grating. We note that Ãi � Ã0 � Ã±. Using Eq. (5.6) and

neglecting the higher order terms we thus obtain

Iout(kx) =
∣∣∣[Ei exp(ik0z) + (Ã− exp(iΩt) + Ã+ exp(−iΩt) + Ã0) exp[i(kxx+ kzz)]

]∣∣∣2
= |Ãi|2 + exp[i(k0z − kzz − kxx)]

[
(ÃiÃ

∗
+) exp(iΩt) + (ÃiÃ−

∗
) exp(−iΩt)

]
+ c.c.

= |Ãi|2 + |Ã0|2 + 2
[
|ÃiÃ−|2 + |ÃiÃ+|2 + 2|Ã2

i Ã+Ã
−| cos[φ(x, z)]

]1/2

cos(Ωt+ γ),

(5.9)

where φ(x, z) = (k0−kz)z−kxx. The cos[φ(x, z)] term vanishes when integrated over

the finite aperture of the detector. Subtracting the illumination background Ãi from

our measurements, we are left with the following signal:

Iout = |Ã0|2 + 2
(
|ÃiÃ−|2 + |ÃiÃ+|2

)1/2

cos(Ωt+ γ). (5.10)

The two terms in this equation can be decoupled using standard techniques: the

DC term is isolated with the aid of a low-pass filter, while the term oscillating at

the acoustic frequency Ω is recoverable using lock-in detection. For any given kx,
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this second term contains contributions from both Ã+ = t+Ein(kx − q) and Ã− =

t−Ein(kx + q). Nevertheless, for a range of kx values it is possible to recover the

magnitude of just the high spatial frequency components of the input field, |Ein(kx +

q)|.

In particular, the DC measurement yields |Ã0| = |t0Ein(k′x)| for k′x ∈ [−ω/c, ω/c],

making it possible to deduce |Ein(kx− q)| (as long as |q| ≤ ω/c+ |kx|). This allows to

determine |Ã+|. The magnitude of illumination background |Ãi| can also be obtained

from the DC measurement. It then becomes possible to use Eq. (5.10) to compute

|Ã−| and, thereby, |Ein(kx + q)|:

|Ein(kx + q)| =

√√√√(|ÃiÃ−|2 + |ÃiÃ+|2
)
− |ÃiÃ0|2|t+/t0|2

|Ã0|2|t−|2
. (5.11)

Assuming that the detector (or a detector array) can be placed so that signal with

kx ∈ [−ω/c, ω/c] can be measured and that q can vary from 0 to 2ω/c by tuning the

acoustic frequency we see that |Ein(kx)| can be determined for kx ∈ [−3ω/c, 3ω/c].

This means that |Ein(kx− q)| is now known for ω/c+ |kx| ≤ |q| ≤ 3ω/c+ |kx|, in turn

making it possible to compute |Ein(kx)| for kx ∈ [−5ω/c, 5ω/c]. Note that in principle,

this process can be continued iteratively, yielding |Ein(kx)| for |kx| ≤ (1 + 2n)ω/c,

n = 1, 2, . . . – i.e. an arbitrarily large value of kx.

5.2.5 Limitations of the iterative computation method

In a realistic setting, the retrieval of high spatial frequency information will be limited

at a certain stage by measurement errors. We proceed to examine the effects of these

errors on the computed value of |Ein(kx)|. To do so, we assume that the two measured

terms in (5.10) contain a normally distributed error with variances σ̃2
0 and σ̃2

Ω for the

DC and the acoustic term respectively. We fix these measurement error levels by
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specifying an overall signal-to-noise ratio. We then have

σ =
signal

SNR
,

where

signal =


1

2ω/c

∫ ω/c
−ω/c |Ã0|2dkx, σ = σ̃0

1
2ω/c

∫ ω/c
−ω/c

1
1+|kx|

∫ (
|ÃiÃ−|2 + |ÃiÃ+|2

)1/2

dqdkx, σ = σ̃Ω

(5.12)

As a result, the computed |Ein(kx + q)| term acquires the errors σ0 and σΩ:

σ2
0 =

1

4

∣∣∣∣t+t−
∣∣∣∣4 1

|t0|4|Ein(kx + q)|2
σ̃2

0

σ2
Ω =

(
1 +

∣∣∣∣t+Ein(kx − q)
t−Ein(kx + q)

∣∣∣∣2
)

1

|t−|2|Ãi|2
σ̃2

Ω.

(5.13)

These expressions reveal that three factors determine the overall reconstruction

error: this error becomes large when t+ � t−, when |Ein(kx + q)| � |Ein|, and/or

when |Ein(kx + q)| � |Ein(kx − q)|. From Eq. (5.8) it is apparent that |t+/t−| � 1

when q = 2kx. This corresponds to phasematching. As this regime is approached,

the undepleted pump approximation ceases to be accurate. To minimize the effect

of phasematching in the spectral region of interest, we must choose kx ≈ ω/c and

q < 2ω/c. The second error-determining factor, |Ein|/|Ein(kx + q)| � 1, reflects

the fact that the system is most sensitive to spectral features whose power equals

or exceeds the average spectral power of the object. In addition, the requirement

|Ein(kx + q)/Ein(kx − q)| � 1 indicates that the spectral features at kx + q must be

stronger than those at kx − q. Because both kx and q are experimentally controlled

variables, it is reasonable to assume that this requirement can be met for most spectral

distributions of interest.
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Figure 5.2: Accumulated fractional error in the reconstructed signal for measure-
ment parameters kx = 1, 0 < q < 2k0 ≡ 2ω/c, ε = 2. Error grows rapidly in the
phasematching region (shaded gray).

In analyzing the error budget, it is useful to assume |Ein(kx+q)| ≈ |Ein(kx+q)| ≈

|Ein| and that kx ≈ ω/c. Furthermore, we assume that SNR is the same for both direct

and acoustic measurements. In this case, the leading term in the overall fractional

error is given by

σ =
1

2

∣∣∣∣q + 2ω/c

q − 2ω/c

∣∣∣∣2
∣∣∣∣∣ε
√

2(ω/c)(ω/c− kx) +
√

(ε− 1)ω/c− q(q − 2)

ε
√

2(ω/c)(ω/c− kx) +
√

(ε− 1)ω/c− q(q + 2)

∣∣∣∣∣
2

1

SNR
. (5.14)

Using this expression, the overall reconstruction error can be simply related to

the SNR of the detected signals. We show the behavior of the error in Fig. 5.2. We

note that the error grows rapidly as the reconstructed spatial frequency approaches

phasematching. In this region, recovering the signal becomes problematic. In order

to discern the input spectrum, we must choose a combination of kx and q in order

to avoid the phasematching peak. It is possible to do so by picking a larger value of

q. Recall that the maximum allowed value of q is determined by the knowledge of

|Ein(kx− q)|, where kx is the measured spatial frequency. The simple measurement of

diffraction-limited spatial spectrum gave |Ein| for kx ∼ (−ω/c, ω/c). Detection of the

waves scattered from the acoustic grating expanded that range to the extent allowed

by phasematching; in the example of Fig. 5.2 the recovered spectrum was increased
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Figure 5.3: (a) Spatial dependence of the field (subwavelength diffraction grating
with a point source) (b) Spectral distribution of the field. (c) Recovered spectral
distribution (assuming 30 dB SNR)

to kx ∼ 2.2(−ω/c, ω/c). Consequently, we can pick a combination of kx and q to

avoid the phasematching divergence. The only penalty associated with this approach

is increased noise in the recovered signal (since a part of the noisy recovered signal

serves as input). If the initial noise floor is sufficiently low, however, the recovery of

many strong spatial spectrum features is possible.

In Fig. 5.3(a) we plot a sample field distribution featuring a subwavelength pattern

(which includes both a subwavelength grating and a point source). It is clear from

Fig. 5.3(b) that the main features of the spectrum are far above the diffraction limit

cut-off. The input SNR is assumed to be 30 dB for both the DC and the lock-in

signals. Reconstructed spectrum is show in Fig. 5.3(c). Although the presence of noise

is evident, the main spectral features of the spatial distribution are well-preserved.

5.2.6 Differential detection

We have seen that it is possible to decouple the “upshifted” and “downshifted” signals

and use the computed high spatial frequencies to generate a super-resolved image.

We have also seen that due to the iterative nature of the procedure, the results

may suffer from poor SNR in the wings of the spatial spectrum under non-ideal noise

conditions. Before we go on to describe an alternative setup that will make it possible

to avoid the problem of the coupling of diffraction orders, it is worth pointing out
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(A) (B)

Figure 5.4: (a) Optical test target and its modified version (inset). In the modified
target, the “5” label of every column has been replaced by another digit. (b) Computed
output of the system in the presence of noise (shown in grayscale) assuming a realistic,
noisy detector with 400 active photocells. The modified optical target is superimposed
for illustration purposes. The output of the system clearly identifies the location of
every modified digit, even for regions far below the diffraction limit.

that the simple system described above can, without further modifications and with

good noise performance, be used in detecting subwavelength morphological changes

between different samples.

To illustrate this, we utilize Eq. (5.10) to perform a comparison between the

standard optical target of Fig. 5.4 and a modified target, where the label of every 6th

line group has been randomly replaced. The first replacement corresponds to the last

resolvable line group (λ/2.5 line separation); the subsequent replacements correspond

to halving the size of the line groups (λ/5,. . ., λ/40). We assume the measurement is

performed by selecting an element of a photodetector array in the observation plane

and using two orthogonal acoustic transducers to scan the acoustic wavevector within

the range qx,y ∈ [−25ω/c, 25ω/c].

It should be emphasized that any method that relies on digital processing of raw

data can suffer form rapid – sometimes exponential [22] – accumulation of noise. To

address this potential issue, in our computations we add a normally-distributed ran-

dom term to the AC amplitude of Eq. (5.10) in order to simulate noise in the system.
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Because SNR is expected to be lowest for maximum values of the acoustic wavevector

q, we consider SNR=10 for q = 25ω/c 1. Assuming a practical 20×20 element pho-

todetector array, we compute the signal given by Eq. (5.10) for the standard target,

as well as the modified target [Fig. 5.4(a)]. Fig. 5.4(b) shows the result of subtracting

the two datasets and performing an inverse Fourier transform, with the resulting plot

superimposed onto the modified optical target. Evidently, every change in the origi-

nal image is manifested in this difference diagram. Furthermore, it is largely localized

in the vicinity of the actual changed pixels. It is possible to discern the difference

signal even from the λ/40 line group label.

The ability to distinguish between fine spatial features of optical targets makes

the system described above uniquely suited for identifying objects based on their

subwavelength spatial features. As a result, it may find applications in fingerprinting

and/or detection of chemical and biological structures.

5.2.7 Reconstruction of the input spectrum with a secondary

optical signal

A straightforward modification of the setup just described not only allows to measure

the “downshifted” Ã− component directly, but also provides a method for retrieving

phase information, making it possible to perform phase-contrast microscopy, as well

as 3D imaging on subwavelength scales.

To this end, a portion of the illuminating radiation is shifted in frequency by Ωb

using a second AOM. Unlike the modulator that interacts with light scattered from

the sample in the Raman-Nath regime [94], this second AOM utilizes an appropriately

oriented and longer cell to produce Bragg scattering. This results in a strong optical

signal at frequency ω + Ωb, |Ãb| exp[i(kb · r− (ω + Ωb)t)], which is projected onto the

detector [see Fig. 5.5(a)]. Interference between the two optical signals produces beat
1Acoustooptic diffraction efficiency, and hence the signal-to-noise ratio varies as 1/q.
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note photocurrents with frequencies Ω, Ωb, Ωb + Ω, Ωb − Ω:

Iout(kx) =

=
∣∣∣Ei exp(ik0z) + Ãb exp(ik · r) + [Ã− exp(iΩt) + Ã+ exp(−iΩt) + Ã0] exp(ik · r)

∣∣∣2
= . . .+ 2|Ã−Ãb| cos[(Ωb + Ω)t+ ∆Φ−] + 2|Ã+Ãb| cos[(Ωb − Ω)t+ ∆Φ+] + . . . ,

(5.15)

where ∆Φ± = (kb− k) · r−φ± is the phase difference between the signal from the

Bragg cell, |Ãb| exp(ikb · r), and the Raman-Nath-scattered signal Ã± exp(ik · r) =

|Ã±| exp[i(φ± + k · r)].

Of special interest is the component at frequency Ω + Ωb, which carries the

high spatial frequency information contained in its modulus and its phase ∆Φ− '

(kbx − kx)x − φ−. Both of these quantities can be retrieved using lock-in techniques.

To produce the lock-in reference, the RF signals driving the two acoustic cells can be

mixed using a nonlinear element (e.g. a diode) and appropriately filtered to produce

the sum frequency. As a result, complete information can be obtained about the

complex high spatial frequency Fourier component Ã−, from which it is straightfor-

ward to deduce the field Ein(kx+ q). By collecting data from multiple CCD pixels, as

well as by varying the acoustic wave vector q, information can be collected about the

spatial spectrum of the object. The data can then be digitally processed to produce

a spatial-domain image containing subwavelength details, as well as phase contrast.

Because the Bragg-shifted signal we use to decouple the Ã+ and Ã− terms serves

as a reference needed to record phase information, and because the image is recon-

structed digitally, our technique bears some similarities with digital Fourier hologra-

phy (DFH) [95, 96, 97]. However, our method contains several key enhancements over

DFH. In conventional holography, care has to be taken to isolate the target signal

both in real and Fourier space. This constrains reference wave geometry, translating

into limitation on the field of view, as well as maximum attainable resolution. The
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requirement that the CCD pixel spacing must allow for imaging the reference wave

fringes further limits the resolution. By virtue of frequency-shifting the signal, it is

possible to isolate the interference term of interest. Furthermore, since the spatial

spectrum measurements are performed not only by selecting different CCD pixels, but

also by scanning the acoustic wavevector, the limitations of CCD’s physical spatial

frequency bandwidth (introduced by pixel granularity) [96] can be circumvented.

We simulate the performance of the system by first using Eq. (5.15) to compute

the response of the system to a calibration signal having unit amplitude for all spatial

frequencies. In practice, such calibration signal might be generated by placing a point

source in the vicinity of the AOM. Eq. (5.15) also provides the effective amplitude and

phase transfer functions that allow to determine the detected signal for a given input

field distribution. Gaussian noise is added to simulate spurious signals in the system.

The input signal can then be obtained by dividing out the calibration quantities. In

Fig. 5.5(b) we plot the simulated retrieved field magnitude using the same target con-

sidered in Fig. 5.3(b). Notice that the noise in the retrieved signal is lower than that

observed in Fig. 5.3(c) despite a worse assumed SNR (20 dB vs 30 dB). Furthermore,

because the phase information is preserved, the full 3D information about the target

is collected.

5.2.8 Some practical considerations

From Eq. (5.8) we can estimate the diffraction efficiency of high spatial frequency

input signal Ein(kin
x ) as ∣∣t±∣∣ ≈ ω/c

2kin
x

∆ε

n(1 + n)
, (5.16)

with n =
√
ε (the refractive index of the acoustic medium), and ∆ε ∝

√
F , the flux

of acoustic energy per unit area.
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Figure 5.5: (a) Schematics of the system which utilizes a reference optical signal and
a second AOM for retrieving high spatial frequency information. (b) Retrieved input
field magnitude using the system in (a), assuming 20 dB SNR at the detector.

In our computations, we assume the operating wavelength of 10 µm with germa-

nium as the acoustic medium. We take ∆ε = 10−3 and restrict the magnitude of

the acoustic wave vector q to 25ω/c. To obtain ∆ε = 10−3 the ultrasonic fluence of

33 W/cm2 is required. Since for high spatial frequencies kin
x ≈ q, acoustic driving

frequencies up to 8.75 GHz are required to retrieve kin
x ≈ 25ω/c. These parameters

are within reach of modern ultrasonic transducers [98], as well as surface acoustic

wave devices [99].

The signals are generated by sampling 106 points in spatial frequency space. As-

suming 400 points can be sampled at once with a detector array, it is necessary to

use a focusing lens with N.A. ≈ 0.6 and adjust the acoustic wave vector compo-

nents qx,y ∈ [−25, 25]ω/c sequentially, effectively scanning the low N.A. system over

a larger spatial frequency spectrum [100, 101]. At KHz readout rates, short (< 1 s)

acquisition times can be obtained with this setup.

We simulate the measurements by taking the signal indicated by Eqs. (5.10) and

(5.15) and introducing additive Gaussian noise. Assuming a shot-noise limited long-

wavelength IR detector with a typical detectivity D∗ ∼ 106cm
√

Hz/W [102] we find
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that ≈ 20− 30 mW of illuminating optical power is needed to obtain SNR of 250/kin
x

used in our calculations.

Finally, we note that a potentially substantial source of noise in the proposed sys-

tem is the detection of zero-order (undiffracted) illumination at the shifted frequencies

due to the finite source linewidth. In the measurement region, the Lorentzian line-

shape of the source takes the same 1/Ω functional dependence as the diffracted signal

of Eq. (5.16). Thus, the zero-order illumination simply adds a constant measurement

background that may be subtracted. The noise floor is effectively raised by a factor

1/ Ω0

∆Ω
∆ε

n(1+n)
, where Ω0 = v/λ is the acoustic frequency that yields q = ω/c, and ∆Ω is

the source linewidth. Assuming the source is a frequency-stabilized quantum cascade

laser with a ∼ 15 KHz linewidth [103], this increase factor is not significant (. 2).

5.2.9 Potential further improvements of the setup

There exist several possible ways to enhance the functionality and the performance

of the proposed devices. For instance, sensitivity may be improved by inserting a

planar lens (of the “poor-man’s superlens” variety) front of the acoustic wave. In

the IR spectral range, such a lens may be implemented as a subwavelength layer of

highly doped semiconductor. When the dielectric constant of this layer is equal to

−1, the evanescent fields are strongly enhanced due to resonant coupling to surface

plasmons [2, 88], increasing their scattering efficiency and leading to better SNR at

the detector.

Another possible way to enhance the scattering process is by placing the sample

directly in the path of an acoustic wave – for instance, by running the wave through

a microchannel containing objects to be studied. Such an approach would be partic-

ularly attractive in building compact integrated systems for chemical and biological

detection. Motivated by these applications, in the next section we will further develop

the idea of evanescent wave scattering from targets embedded inside the grating.
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5.3 Optical fingerprinting beyond the diffraction

limit

5.3.1 Motivation

In the previous sections we have described a method to retrieve high spatial frequency

field components by scattering on an acoustic grating. Among the advantages of this

method was the ability to tune the grating period, and, more significantly, the fact

that the driving signal for the grating enables the spectral offset and lock-in detection

of the scattered signal. The drawbacks included relatively low scattering efficiency

(caused by low effective index contrast of the grating), as well as challenges in gener-

ating GHz-range ultrasound necessary for scaling this approach from far- and mid-IR

to near-IR and visible domains. One way of dealing with these problems is to aban-

don the idea of using the same acoustic grating for both the spatial and temporal

frequency shifts. Phonon scattering can still be used for the purposes of spectral off-

set and signal retrieval through lock-in detection, but evanescent wave scattering can

be performed using a separate nanofabricated element with high scattering efficiency

and large grating wave vector. This might make it possible to construct devices that

have higher sensitivity and are able to operate at visible wavelengths. In the present

section we describe such a device and, using a 2D model, demonstrate that it is able

to differentiate between deeply subwavelength structures. Thus, in principle, it is pos-

sible to create “fingerprints” of sub-micron-scale objects based on their characteristic

spatial frequency spectrum at a particular illumination wavelength. This effectively

creates a new detection modality that might join the ranks of such techniques as ab-

sorption spectroscopy, NMR, mass spectrometry, and cavity ring-down spectroscopy

in identifying chemical and biological agents.
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Figure 5.6: Schematics of the proposed system. Evanescent components of radiation
from the sample scatter from the nanostructure and propagate into the far field.
Modulation of the nanorods (indicated by the arrows) enables unambiguous recovery
of the evanescent field contributions.

5.3.2 Proposed setup

The proposed detection system is shown in Fig. 5.6. The target object, embedded in

a periodic patterned array, is illuminated with a plane wave. The spacing between

the elements of the patterned array determines the resolution of the system, as well

as the maximum allowable size of the target object. Because of this, the pictured

device is particularly suitable for studying “severely subwavelength” targets.

Portion of the incident radiation that scatters from subwavelength features of the

target proceeds to scatter again from the nanorod array, reducing the transverse wave

vector of the signal. As a result of this wavenumber reduction, a range of waves that

start out as evanescent (kx > k0) become propagating, contributing to the far-field

detected intensity. Inside the nanostructure, the dielectric permittivity is modulated

by a running acoustic wave as ε = ε+∆ε cos(qx−Ωt). The frequency of the scattered

signal is therefore shifted by Ω, allowing to decouple it from the rest of the propagating

waves.
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5.3.3 Solving the scattering problem in the Born approxima-

tion

For simplicity, we consider a system that is translation invariant in the direction of the

cylindrical nanorods, perfectly aligned along the z axis. This setup naturally lends

itself to a quasi-two-dimensional treatment. Accordingly, the target objects are also

assumed to have infinite extent in the z direction. We will develop a perturbation

theory of the scattering phenomenon, in which both the nanorods and the targets are

treated as parts of the perturbing potential.

Our approach is based on the integral equation formulation of the Maxwell’s equa-

tions for the relevant polarization. We will see that this naturally leads to a procedure

identical to the Born approximation treatment of the scattering problem in quantum

mechanics.

We start by observing that for waves with the electric field polarized in the z

direction (i.e. along the nanorods) the vector wave equation reduces to its scalar

version for E ≡ Ez:

∇2E + ε
(ω
c

)2

= 0. (5.17)

Let ε̄ ≡ 〈ε(x, y)〉 be the average dielectric constant, and we define

δε = ε(x, y)− ε̄. (5.18)

We can rewrite Eq. (5.17) as

∇2E + ε̄
(ω
c

)2

E = −δε
(ω
c

)2

E, (5.19)

which can be solved by method of Green’s functions:

E(r) = E0(r) +
(ω
c

)2
∫
G(r, r′)δε(r′)E(r′)dr′, (5.20)
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where E0(r) is the solution to the homogeneous Helmholtz equation (i.e. Eq. (5.19)

with δε = 0), and where G(r, r′) satisfies

∇2G(r, r′)− k2G(r, r′) = −δ(r − r′), (5.21)

with k2 ≡ ε̄
(
ω
c

)2. This is the usual Green’s function for a 2D Helmholtz equation.

Using the standard techniques, it can be shown that

G(r, r′) = − i
4
H

(1)
0 (k|r − r′|), (5.22)

where H(1)
0 is the Hankel function.

The integral formulation of the wave equation solution presented in Eq. (5.20) is

identical in form to the integral solutions for wave functions in elementary scattering

problems of quantum mechanics, where uniform plane waves impinge on a weak local-

ized potential. Guided by this observation, we will perform a perturbative expansion

of Eq. (5.20) and show that crucial features of plane wave propagation through the

system, in particular, the “down-shifting” of high spatial frequency components of a

target by scattering on the nanorods, are captured by the first two terms of the Born

series.

In order for this approach to be valid, we need to assume that plane waves in this

system are not strongly affected by the effective perturbing potential δε(x, y). In turn,

this means that the spatial dimensions and/or the index contrast of the scattering

system are small. As a result, we may write the scattering solution as

E(r) = E0(r) +
(ω
c

)2
∫
G(r, r′)δε(r)E0(r′)dr′+

+
(ω
c

)4
∫
G(r, r′)δε(r)

∫
G(r′, r′′)δε(r′′)E0(r′′)dr′′dr′

+O
(
(δε)3

)
,

(5.23)
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where E0(r) = exp(ik ·r). We wish to study the effects of a double scattering process,

where the waves scatter from the target and then from the nanorods (or vice versa).

To do so, we decompose δε(r) as

δε(r) = ε(r)− ε(r)

= εgr(r) + εt(r)− εgr(r) + εt(r)

= δεgr(r) + δεt(r).2

(5.24)

Dropping the higher order terms, we abbreviate Eq. (5.23) as follows:

E(r) ' E0(r) + I.B.1 + I.B.2

≡ E0(r)− i

4

(ω
c

)2 (
Î.B.

(1)

1 + Î.B.
(2)

1

)
− 1

16

(ω
c

)4 (
Î.B.

(1)

2 + Î.B.
(2)

2 + Î.B.
(3)

2 + Î.B.
(4)

2

)
,

(5.25)

where the terms of the form Î.B.
(k)

n correspond to the various scattering processes in

the nth order of the Born series and involve only δεgr, δεt, plane waves, and Hankel

functions resulting from substituting in Eqs. (5.22) and (5.24). For example, we have

Î.B.
(1)

2 =

∫∫
δεgr(r

′)δεgr(r
′′)H

(1)
0 (k|r − r′|)H(1)

0 (k|r′ − r′′|) exp(ik · r′′)dr′′dr′

Î.B.
(2)

2 =

∫∫
δεgr(r

′)δεt(r
′′)H

(1)
0 (k|r − r′|)H(1)

0 (k|r′ − r′′|) exp(ik · r′′)dr′′dr′

Î.B.
(3)

2 =

∫∫
δεt(r

′)δεgr(r
′′)H

(1)
0 (k|r − r′|)H(1)

0 (k|r′ − r′′|) exp(ik · r′′)dr′′dr′.

(5.26)

2This decomposition makes sense only if we specify the role of background permittivity εb in εgr
or εt. For instance, we can stipulate that ε(r) = {(εnanorods − εb)1nanorods}+ {(εt − εb)1target + εb},
where the indicator functions are nonzero only in the regions of nanorods or targets, and where the
terms in braces give εgr and εt respectively.
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We proceed to put in explicit expressions for a regular nanorod grid and rewrite

δεgr(r) and δεt(r) in Fourier space:

δεgr(x, y) = ε1
∑
m,n

δ(x−mΛ)δ(y − nΛ) ~ circ

(√
x2 + y2

a

)
− δεgr

= πε1

( a
Λ

)2∑
m,n

jinc
( a

Λ

√
m2 + n2

)
ei

2π
Λ

(mx+ny) − πε1
( a

Λ

)2

= πε1

( a
Λ

)2
∫ [∑

m,n

δ

(
qx −m

2π

Λ

)
δ

(
qy − n

2π

Λ

)
jinc

( a
2π

√
q2
x + q2

y

)
−

− δ(2)(q)
]

exp(iq · r)dq

≡ a2ε1
4π

∫
X′
(

Λqx
2π

,
Λqy
2π

)
jinc

( a
2π

√
q2
x + q2

y

)
exp(iq · r)dq;

δεt(r) =
1

(2π)2

∫
δεt(q) exp(iq · r)dq,

(5.27)

where we assume that nanorods have radius a, spacing Λ and permittivity (ε1 + εb),3

circ(r/a) defines a cylinder of unit height and radius a, and jinc(r) is the cylindrically-

symmetric analog of the normalized sinc function:

jinc(r) ≡ J1(2πr)

πr
. (5.28)

In addition, we useX′(x/Λ) to denote a 2D Dirac comb with spacing Λ and a removed

delta function at the central coordinate q = 0 (hence the prime):

X′(x/Λ) ≡
∑

m6=0,n6=0

δ(x−mΛ)δ(y − nΛ). (5.29)

3Note that we implicitly assumed zero permittivity outside the nanorods. This made the DC
Fourier component of δεgr identically zero. However, one could perform decomposition in Eq. (5.24)
in a way that introduces some background permittivity into δεgr. In this case, a DC term in Eq. (5.27)
would appear, but it would not have any time dependence, and we would be justified in dropping it
when examining the acoustically modulated signal.
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We will furthermore assume that the distance to the detector is large compared with

the size of the scattering system. This allows to use the asymptotic form of the Hankel

function:

H
(1)
0 (k|r − r′|) ≈ 1 + i√

π

eikr√
kr

exp(−ikr̂ · r′). (5.30)

Finally, we assume that permittivity of the grid is modulated in space and time (e.g.

with an acoustic transducer) so that the real-space and Fourier-space expression of

Eq. (5.27) become

δεgr(x, y) = ε1
∑
m,n

δ(x−mΛ− ηx cos(Ωt))δ(y − nΛ− ηy cos(Ωt)) ~ circ

(√
x2 + y2

a

)

=
a2ε1
4π

∫
X′
(

Λqx
2π

,
Λqy
2π

)
jinc

( a
2π

√
q2
x + q2

y

)
exp(iq · r) exp(iq · η cos(Ωt))dq,

(5.31)

where |η| � Λ and η = 0 for a static grid (no modulation).

With these approximations and Fourier-space expressions the integrals of

Eq. (5.26) become straightforward (albeit cumbersome). For instance:

Î.B.
(2)

2 =

∫∫
δεgr(r

′)δεt(r
′′)H

(1)
0 (k|r − r′|)H(1)

0 (k|r′ − r′′|) exp(ik · r′′)dr′′dr′

= C1
eikr√
kr

∫∫
dq′ dq′′ δεt(q

′′)X′
(

Λqx
2π

,
Λqy
2π

)
jinc

( a
2π

√
q2
x + q2

y

)
exp(iq · η cos(Ωt))

×
∫
dr′ exp(iq′ · r′) exp [i(k + q′′) · r′] exp(−ikr̂ · r′))

×
∫
du exp [−i(k + q′′) · u]H

(1)
0 (ku),

(5.32)

where we define u = r′ − r′′. In this expression, the dr′ integral produces a delta

function:

∫
dr′ exp(iq′ ·r′) exp [i(k + q′′) · r′] exp(−ikr̂ ·r′)) = 2πδ(q′+q′′+k−kobs), (5.33)
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where kr̂ ≡ kobs corresponds to the plane wave going from the system to the detector.

The du integral can be rewritten in polar coordinates as

∫
H

(1)
0 (ku) exp (−is · u) du =

∫
H

(1)
0 (ku)e−i

s
k
ku cos θu du dθ

= 2π

∫
H

(1)
0 (ku)J0(su)udu =

4

i

∫
K0(−iku)J0(su)u du

=
4

i

1

s2 − k2
.

(5.34)

where K0 is a modified Bessel function, and the last line can be found in integral

tables. Using the delta function of Eq. (5.33), we write Eq. (5.32) as

Î.B.
(2)

2 =

= C
eikr√
kr

∫
X′
(

Λqx
2π

,
Λqy
2π

)
jinc

( a
2π

√
q2
x + q2

y

) δεt(kobs − k − q)

|kobs − q|2 − k2
exp(iq · η cos(Ωt))dq.

(5.35)

The exp(iq · η cos(Ωt)) term can be represented as a sum of Bessel functions using

the familiar Jacobi-Anger expansion,

eiz cos θ =
∞∑

n=−∞

inJn (z) einθ. (5.36)

Eq. (5.35) then becomes

Î.B.
(2)

2 =
eikr√
kr

∞∑
n=−∞

Ane
inΩ, (5.37)

that is, a set of cylindrical waves at harmonics of the modulation frequency Ω, with

the amplitude of the nth harmonic given by

An = C

∫
inJn (q · η)X′

(
Λqx
2π

,
Λqy
2π

)
jinc

(aq
2π

) δεt(kobs − k − q)

q2 − 2kobs · q
dq, (5.38)
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where we used the fact that |kobs| = |k| to simplify the denominator.

This gives the amplitude of the detected signal for the angular spectrum compo-

nent in the direction of kobs, with k in the direction of the illuminating plane wave.

Note that this term is modulated as exp(iΩt), which allows the signal to be isolated

from the rest of the propagating spectrum. In particular, we assume that the field

described by Eq. (5.37) illuminates a square-law photodetector, which is a part of a

phase-sensitive (lock-in) detection setup, which uses the modulation frequency Ω as

a reference. The measured signal, therefore, is proportional to |Am|2. To write the

expression for |Am|2, let us first rewrite Eq. (5.38) as

Am = C
∑′

qn

imJm (qn · η) jinc
(aqn

2π

) δεt(kobs − k − qn)

q2
n − 2kobs · qn

, (5.39)

where we’ve used the X function to turn the integral into a sum over the grid recip-

rocal lattice vectors qn ≡ 2π
Λ
{nx, ny}, with nx, ny ∈ Z∗, the set of non-zero integers

(the prime on the sum reminds us of this). The exclusion of the DC term (q = 0 in

Fourier space) ensures that for sufficiently small (subwavelength) values of the grid

lattice constant Λ, the denominator of Eq. (5.39) never blows up.4

Let us also assume that the fingerprinting sample is comprised of N target objects

randomly distributed in the nanorod grid. This situation is modeled by writing the
4What if we weren’t so lucky?.. For instance, if the DC term didn’t vanish, we could rewrite the

q = {0, 0} contribution to Eq. (5.38) as

Am|q={0,0} ∼ lim
q→{0,0}

∫
Jm (q · η) δεt(kobs − k − q)

δ(qx, qy)

2k cos θ

(
1

q − 2k cos θ
− 1

q

)
q dq dθ

= lim
q→{0,0}

∫
Jm (q · η) δεt(kobs − k)

δ(q)

2πk

(
sec2 θ

2k
+

sec θ

q

)
dq dθ,

and looking at the sec θ, sec2 θ, and 1/q terms, it is clear that the integral diverges. We encounter
a similarly divergent integral when qn is too small, and we h ave qn = 2k cos θ. This is not unex-
pected. A singularity in the source region is a very common feature in Green’s function treatment
of electromagnetic scattering problems [104, 105], and techniques to deal with the singular integrals
by treating them in the principal value sense are well documented [106]. In our theory, however,
these divergences do not appear.
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dielectric function of the sample as

δεt(q) =

∫ ∑
ri

δεt(r − ri)e−iq·rdr = δε
(0)
t (q)

∑
ri

e−iq·ri , (5.40)

where ri is the random coordinate of an individual scatterer, and δε(0)
t (q) is its spatial

spectrum (for simplicity, we take it to be rotation-invariant). We now plug this form

of the dielectric constant into Eq. (5.39), working under assumption that the grid

lattice constant is . 0.1λ. This implies that |qn| � k, which allows us to neglect

the kobs and k terms in Eq. (5.39) as small corrections, unless they are contributing

to phase. (Observe, in particular, that this assumption disallows the possibility of

getting zero in the denominator of Eq. (5.39) when q2 = 2kobs · q.) Also, neglecting

absorption in the sample, its spatial spectrum is real, and its Fourier transform,

therefore, symmetric. These approximations allow us to write

Am = C
∑
qn

imJm (qn · η) jinc
(aqn

2π

) δε(0)
t (qn)

|qn|2
∑
ri

eiqn·rie−i∆k·ri . (5.41)

At first glance, the sum over random phases in Eq. (5.40) has a strong negative

impact on the performance of the proposed system. Indeed, q · ri ∼ L/Λ � 2π

(where L is the size of the grid). Ordinarily, the superposition of such phases creates

a complex and unpredictable interference pattern. However, as we show below, for a

broad range of experimental parameters these random contributions average to zero

on time and length scales relevant for optical detection.
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The measured signal of the kth acoustic diffraction order can be written as

|Ak|2 =

∣∣∣∣∣∣C
∑
qn

ikJk (qn · η) jinc
(aqn

2π

) δε(0)
t (qn)

|qn|2
∑
ri

e−iq·ri

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∑
qn

F (qn)
∑
ri

e−iq·ri

∣∣∣∣∣∣
2

=
∑
qn

|F (qn)|2N +
∑
qn 6=qm

F (qn)F ∗(qm)
∑
ri

e−i(qn−qm)·ri

+
∑
qn

|F (qn)|2
∑
ri 6=rj

eiqn·(ri−rj)e−i∆k·(ri−rj)

+
∑
qn 6=qm

F (qn)F ∗(qm)
∑
ri 6=rj

e−i∆k·(ri−rj) exp

[
i

(
qn + qm

2

)
· (ri − rj)

]
×

× exp

[
i

(
qn − qm

2

)
· (ri + rj)

]
.

(5.42)

Here, we explicitly separated phase factors from the other terms in the expression by

defining

F (q) = ikJk (q · η) jinc
(aq

2π

) δε(0)
t (q)

|q|2
. (5.43)

In addition, when squaring the double sum over the scatterers and the reciprocal

lattice vectors, we separated out the diagonal terms. As a result, we have decomposed

the measured signal into four components. The first term, diagonal in both q and

r, contains desired “fingerprinting” signature. As can be seen from Eq. (5.43), this

signature is generated from the target object’s spatial spectrum by sampling it with

period determined by the grid reciprocal lattice vectors and summing the samples

with weights given by 1/|q|2. Notice that the strength of contributions from high

spatial frequencies decreases as q−2.

We will now consider the other terms in Eq. (5.42). There, the fingerprinting

function F (q) appears in conjunction with phase factors of the form exp(∆k · r)
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and/or exp(q · r). Because r is a random variable, one might expect these expo-

nential factors to follow zero mean distributions. If the measurement process can be

made to incorporate an appropriate averaging procedure, the contribution towards

the fingerprinting signal from these random components will be negligible.

Inherently, any optical measurement must incorporate some kind of spatial and

temporal averaging, since it registers the energy delivered to a finite detector area

over a finite time. What does this imply for the system under consideration? We

first consider the effects of the detector angular aperture. The finite value of the

aperture means that the detector effectively averages the signal over several values of

∆k, where ∆k is related to the observation angle θ and incidence angle θ0 by

∆k ≡ kobs − k =
ω

c
[(cos θ − cos θ0)x̂+ (sin θ − sin θ0)ŷ] .

We can estimate the result of this averaging analytically by integrating over all possi-

ble scattering angles, θ ∈ [0, 2π]. If the angular correlation of the field is much smaller

than the angular aperture of the detector, this will be a good approximation for the

detector’s spatial averaging effects. We have:

〈
e−i∆k(θ)·(ri−rj)

〉
θ

=
1

2π

∫ 2π

0

e−i∆k(θ)·(ri−rj)dθ = eik·(ri−rj)J0

(ω
c
|ri − rj|

)
.

(5.44)

Knowing the 1/
√
x asymptotic behavior of the Bessel function J0(x), and noting

that |ri − rj| ∼ L, we can conclude that for any pair {ri, rj}, Eq. (5.44) describes a

random variable whose variance σ2 is proportional to λ/L. We conclude that due to

detector’s finite aperture, it is possible to make the typical contribution of two of the

terms in Eq. (5.42) small by considering a large enough grid size L.

Consider now the effects of finite measurement time. Recall that the target objects

are suspended in a fluid. Their positions ri are, therefore, time-dependent due to

thermal motion, agitation of the fluid from the ultrasonically-modulated nanorods, as
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well as the flow of the sample transported through the device. Aside from observation

angle-dependent phases treated above, the dependence on ri in Eq. (5.42) is restricted

to terms of the form exp(iq · ri), where |q| is of the order 2π/Λ. As discussed before,

the reciprocal lattice spacing 2π/Λ is assumed to be & 2π × 10/λ. Consequently if

every ri changes by as little as λ/10, this will effectively give a completely different

configuration. What is the typical time for the system to do so?.. If we take into

account thermal motion, the rms displacement in time t given by

drms =
√

6Dt, (5.45)

where the diffusion constant D is given by the Einstein-Stokes formula,

D =
kBT

6πηR
=

2.5× 10−19

R
(for water at room temperature). (5.46)

Here, η gives the fluid’s viscosity and R is the particle’s radius. For relatively small

objects (e.g. R = 100 nm at λ = 10 µm illuminating wavelength), Eq. (5.45) suggests

that a new configuration is attained every 50 ms from thermal motion alone. This

process occurs much quicker if we take into account the extra “kicks” that particles

receive as a result of their proximity to a vibrating lattice. Assuming the vibration

amplitude is 10 nm at 100 kHz, the typical velocity attained is ∼ 103 µm/s. In certain

circumstances (e.g., turbulent flows) we may expect this to also be the characteristic

instantaneous velocity of the particles. In this case, the “reconfiguration” time drops

to 1 ms.

The exact functional dependence of the averaging process’ convergence to the

mean depends on the physical model of particle motion. For instance, given the

velocity v of the particle, we can imagine the particle holding static for time δt,

followed by a Brownian kick that instantaneously displaces it a distance v δt in a

random direction. For v δt & λ/10, as discussed above, this effectively results in a

111



completely new measurement of the phase factor exp(iq ·ri). Averaging over the time

T , then, is approximately equivalent to taking the mean of T/δt ∼ 10Tv/λ discrete

measurements. By central limit theorem, this sample mean converges to zero as√
λ/Tv. Alternatively, one might imagine a process where over time T , the particle

has, with equal probability, visited all points on a disk of radius R. Time average is

then equivalent to a spatial average over this region:

〈exp(iq · r)〉r =
1

πR

∫ R

0

r dr

∫ 2π

0

eiqr cos θdθ =
2

qR
J1(qR) ∼ 1

(qR)3/2
. (5.47)

Motivated, again, by the ideas of Brownian motion, we suppose that R ∼
√
T , in

which case Eq. (5.47) suggests that the rate of convergence to the zero mean is

1/T 3/4.

From these considerations, we conclude that as a result of time averaging, terms

with exp(iq · ri) phase factors do not contribute to the overall signal provided a

sufficiently long integration time T is used. The net error from these terms goes to

zero, at worst, as 1/
√
T . We can rewrite Eq. (5.42), explicitly dropping the quantities

that vanish from averaging:

|Ak|2 =

∣∣∣∣∣∣
∑
qn

F (qn)
∑
ri

e−iq·ri

∣∣∣∣∣∣
2

= N
∑
qn

|F (qn)|2 +O

(
N√
T

)
+O

(
N√
LT

)
.

(5.48)

The above result was derived by assuming the scatterers to be rotationally invari-

ant. This allowed us [in Eq. (5.40)] to decompose the spatial spectrum of a particular

random realization into the transform of an individual target multiplied by a sum over

random phase factors. It turns out that the procedure of averaging over realizations,

motivated above by the finite integration time, can be used to relax the assumption
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of rotational invariance. We return to Eq. (5.40) and rewrite it as

δεt(q) =

∫ ∑
ri

δεt(r − ri)e−iq·rdr =
∑
ri

δε
(0)
t (Rθiq)e−iq·ri , (5.49)

where ri is the random coordinate of an individual scatterer, and δε(0)
t (q) is its spatial

spectrum. Notice that each scatterer is rotated by a random angle θi; consequently,

the spatial spectrum expression δε(0)
t (q) is evaluated at the rotated Fourier coordinates

Rθiq. Now, we return to Eq. (5.42) and write down the average over ri using the

dielectric function of Eq. (5.49):

〈 ∣∣Ak ∣∣ 2
〉
r =

〈∣∣∣∣∣∣
∑
qn

F̃ (qn)
∑
ri

δε
(0)
t (Rθiq)e−iq·ri

∣∣∣∣∣∣
2〉
r

=
∑
qn

|F̃ (qn)|2
〈∑
ri

∣∣∣δε(0)
t (Rθiqn)

∣∣∣2〉
r

+
∑
qn 6=qm

F̃ (qn)F̃ ∗(qm)

〈∑
ri

δε
(0)
t (Rθiqn)δε

(0)
t
∗
(Rθiqm)e−i(qn−qm)·ri

〉
r

+
∑
qn

|F̃ (qn)|2
〈 ∑
ri 6=rj

δε
(0)
t (Rθiqn)δε

(0)
t
∗
(Rθjqn)eiqn·(ri−rj)e−i∆k·(ri−rj)

〉
r

+
∑
qn 6=qm

F̃ (qn)F̃ ∗(qm)

〈 ∑
ri 6=rj

δε
(0)
t (Rθiqn)δε

(0)
t
∗
(Rθjqm)e−i∆k·(ri−rj)

× exp

[
i

(
qn + qm

2

)
· (ri − rj)

]
exp

[
i

(
qn − qm

2

)
· (ri + rj)

]〉
r
.

(5.50)

Here, F̃ (q) is defined as

F̃ (q) = ikJk (q · η) jinc
(aq

2π

) 1

|q|2
. (5.51)
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We can also rewrite the average over orientations as

〈∑
ri

δε
(0)
t (Rθiq)

〉
r

=
N

2π

∫ 2π

0

δε
(0)
t (Rθq)dθ ≡ Nδεavt (q) (5.52)

Once again, the off-diagonal (ri 6= rj, qn 6= qm) terms can be neglected given suffi-

ciently long integration time. We are left, then, with an answer identical to the one

before [Eq. (5.48)]; the only change is that δε(0)
t is replaced by the angular average

δεavt defined in Eq. (5.52).

In summary, the collected signal is represented as the following sum over the grid

reciprocal lattice vectors:

|Ak|2 = N
∑′

q

∣∣∣∣ikJk (q · η) jinc
(aq

2π

) δεavt (q)

q2

∣∣∣∣2 +O

(
N√
T

)
. (5.53)

Recall that the index k represents the signal shifted by k acoustic frequencies as per

Eq. (5.37). Without loss of generality, we can select the k = 1 term for detection

(this is analogous to picking the first diffracted order in the Raman-Nath treatment

of the acoustooptic effect). Remembering that the vibrational displacement vector is

small (η � λ), and hence, J1 (q · η) ≈ q · η, the expression for the signal becomes

|A|2 = N
∑′

q

∣∣∣∣q · η jinc
(aq

2π

) δεavt (q)

q2

∣∣∣∣2 +O

(
N√
T

)
. (5.54)

In other words, this is the sum of samples of the 2D spatial frequency distribution of

individual targets, averaged over the angle, with samples taken at spatial frequencies

q, q 6= 0. The jinc term provides an overall envelope that is determined by the

transform of an individual nanorod (or, more generally, by the transform of a grid’s

unit cell).

What are the effects of choosing different periods for the grid?.. We can under-

stand this by examining Fig. 5.7, which shows a typical radially symmetric spatial
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Figure 5.7: Spatial frequency space sampling for a typical target of size λ/20. (a)
Isotropic grid with spacing λ/5 (b) Isotropic grid with spacing λ/20 (c) Anisotropic
grid with spacing {λ/5, λ/30}. The qy = 0 row of sampling points is removed if one
assumes the acoustic displacement vector to be η = ηŷ, which implies Eq. (5.54)
gives 0 for qy = 0.

frequency plot for a target with a diameter λ/20. The dots represent the sampling

points. Panel (a) of Fig. 5.7 shows the sampling point density for a grid of period

λ/5 in either direction. This causes the samples to be concentrated in the central

spatial frequency lobe. Technically, this central lobe still contains subwavelength

components, and provided the number of targets N is fixed in Eq. (5.54), the relative

strength of contributions to these central spatial frequencies could be used to differ-

entiate between various subwavelength particles of different sizes (e.g. λ/20 vs λ/30).

Fixing, or, more generally, controlling for the number of particles N is not unrealistic

and can be done with many techniques, e.g. flow cytometry, but we would like to

minimize the complexity of the proposed apparatus. Therefore, we wish to explore

setups that are not sensitive to N .

Our first observation is that by decreasing the period of the grid, we effectively

spread the sampling points apart in Fourier space. We can imagine tuning the grid

size in order to position these sampling points at specific spatial frequencies that we

would like to detect. One possible approach is shown in Fig. 5.7(b), where the grid

period is the minimum allowed such that the targets still fit inside the structure. One
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might imagine that this arrangement might be better at picking up features carried by

higher spatial frequencies. However, using such a fine grid carries with itself various

manufacturing and experimental challenges.

Three facts may help get around these problems. First, we note that the period

of the grid need not be isotropic in the two directions. In particular, we can imagine

a very small spacing between the nanorods in the y direction, leading to large values

of spatial frequency components qy, however, a reasonably large spacing in the x

direction will still allow the target particles to move through the device. Additionally,

this large spacing leads to dense clustering of sampling points along the qx coordinate.

In other words, we can pick a value of qy to target a particular range of spatial

frequencies, and then use dense sampling points in the qx direction to maximize the

signal from these components.

The second feature of our system we would like to utilize is the freedom to pick

the acoustic displacement vector η. In particular, if one assumes the acoustic dis-

placement vector to be η = ηŷ, Eq. (5.54) gives 0 for qy = 0. This has the effect

of removing a row of sampling points that would otherwise pass through the strong

central lobe of the Fourier signal, and allows to focus on the higher (but weaker) spa-

tial frequency components instead. The sampling point arrangement corresponding

to this system is illustrated in Fig. 5.7(c).

Finally, we note that while the grid spacing is “hardwired” by the manufacturing

process, it is easy to manufacture “chirped” grids, with varying periods. In particular,

we can take the grid that gives the sampling points of Fig. 5.7(c) and make the period

in the y direction vary smoothly along the grating. Observe that this is also the

direction that the sample particles are free to travel in. Thus, by collecting the signal

from the different parts of the device, we are effectively sweeping the (qy = const)

rows of sampling points, probing the different regions of the spatial frequency space.
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(a) (b) (c)

Figure 5.8: Simulated signal as a function of grating period in the y direction.

5.3.4 Simulation results

To illustrate the ability of the proposed system to distinguish between subwavelength

particles, in Fig. 5.8 we plot the signal computed from Eq. (5.54) as a function of the

grating period in the y direction (Λy). As a basic model target, we take a cylinder

with diameter λ/20. We then explore how the computed signal differs as we perturb

the target’s size, shape, and as we introduce some inner structure to the particle

[panels (a), (b), and (c) of Fig. 5.8]. The abscissas indicate the local period of the

nanostructure in the y direction in units of 1/λ. This can be thought of as a spatial

scale on which the target is probed. The curves, plotted on the log-log scale, illustrate

the differences between signals for the different conformations of our model particle,

depicted above the panels. We note that the secular trend of the curves indicates

a power law decrease of the signal as spatial frequencies increase; in most optical

systems this decrease is expected to be exponential.

The clear differences between the curves in each panel of Fig. 5.8 suggest that

changes in either the size, shape, or structure of targets on a deeply subwavelength

scale can be detected with our proposed approach. We note, however, that due to

angular averaging over multiple randomly oriented targets, this scheme is sensitive

only to the average radial spatial frequency distributions in the sample, which are not

necessarily unique. Thus, these signals do not provide unambiguous signatures for

arbitrary targets. However, even with this limitation it should be possible to extract
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useful information given some prior knowledge about the sample under study. For

instance, given a mixture containing the differently-sized particles of Fig. 5.8(a), we

could estimate the size of the smallest component in the mixture by observing the

location of the first minimum of the signal as the period Λy decreases. Similarly,

for a circle/ellipsoid family of Fig. 5.8(b), we could estimate the eccentricity of the

“narrowest” ellipsoid.

If it is known that only one out of a set of possible targets is present, its identity

could be revealed by comparing the data to known calibration signals.

Finally, we can also imagine other experiments, in which the shape or structure

of the target is changing in real time under the influence of some external mechanism

(e.g. mitochondria undergoing calcium overload [107] or cells undergoing apopto-

sis [108]). Looking at the curves of Fig. 5.8(b) it’s easy to see that as the ellipsoidal

targets become deformed into spheres (a good model for the calcium-induced alter-

ations in mitochondrial morphology [107]), the signal changes rather dramatically.

Thus, the proposed system could be used to detect real-time target morphology

changes on a deeply subwavelength scale.

5.4 Conclusion

Systems described in this chapter provide a new approach towards far-field retrieval of

evanescent waves by using diffraction on a modulated subwavelength structure. Sev-

eral possible implementations of this idea exist: for mid-IR and higher wavelengths,

acoustic phonons can serve as a dynamic grating that is tunable and does not require

nanofabrication. In the visible range, scattering can be performed using a periodic

nanostructure that is modulated via external means. An important point to empha-

size is that it is the scale of the patterning that determines the maximum spatial fre-

quencies accessible by this device. Although in our discussions, we assumed that the
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nanoparticle targets we are trying to detect are embedded in the nanopatterned grat-

ing, we expect the general conclusions to hold for the case of targets deposited on top

of the grating. Alternatively, “embedding” may be performed by etching microchan-

nels in the patterned device for the nanoparticles. This would remove constraints on

the particle size that exist with the nanorod-based device illustrated earlier.

Existing schemes for nanoparticle detection and differentiation that have been

reported in the literature, for the most part, use the spatial frequency information only

indirectly: for example, the strong dependence between a particle’s scattering cross

section and its radius can be used to differentiate individual particles by size [109].

With the methods described in this chapter, it is possible to create a much richer

spatial frequency fingerprint for nanoscale objects, creating a new and, potentially,

significant detection modality.
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Chapter 6

Conclusion

In the introduction to this thesis, we gave one definition of metamaterials as “artifi-

cial media with unusual electromagnetic properties”. This definition is deliberately

vague: what is unusual to one person might seem quite usual to another. Moreover,

the qualitative evolution of this perception can differ rather drastically as one gains

knowledge about the subject. In some cases, things that seem unusual at the start

will become commonplace as the inquiry progresses. In many other cases, the mystery

only deepens as knowledge accumulates. The researcher may feel as confused as ever

– albeit, on a higher level and about more important things. This is usually a sign of

a good research problem.

The study of metamaterials in general, and hyperbolic metamaterials in particu-

lar, falls firmly in this latter category of problems. Anisotropic metamaterials with

hyperbolic dispersion relations were originally proposed as a simple alternative to

negatively refractive media operating via magnetic resonances. The basic operating

principles of all-angle negative refraction of hyperbolic materials are easy to under-

stand for anyone that has studied birefringence. Despite this superficial simplicity,

this class of metamaterials demonstrates unusual properties that go far beyond the

geometry of refraction. For example, we have seen that with appropriate boundary
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conditions, negative refraction results in negative phase velocity. We have shown how

this phenomenon arises in metallic, dielectric, and bilayer waveguides and studied its

implications in creating slow light devices.

Perhaps more importantly, we demonstrated that the unbounded dispersion

branches alter the very fundamentals of wave propagation in bulk hyperbolic materi-

als, which, in turn, enables novel devices with a multitude of prospective applications,

the most prominent of which we described in this work. We have seen how arbitrarily

large values of the wave vector (limited only by the material patterning scale)

can be used for subwavelength light confinement and focusing. This is potentially

important for nonlinear optical devices, which operate at high field intensities. In

the imaging domain, we have seen that the high-k bulk waves can couple to high

spatial frequency Fourier field harmonics, which exponentially decay in free space.

We can then employ scattering from a subwavelength structure, or magnification

in cylindrical geometry, to convert those high-k harmonics into propagating waves,

thereby gathering subwavelength information in the far field.

Aside from merely allowing high-k modes, the hyperbolic nature of dispersion

suggests that the density of such states is (formally) infinite. We studied the resultant

singularity in the photonic density of states and its role in creating radiative decay

channels that enhance the fluorescence of a dipole emitter. We also discussed its role

in enabling the hyperlens, where it allows propagation of high angular momentum

states. These extra scattering channels serve as extra information channels carrying

subwavelength information.

In the last chapter of this thesis, we focused on the idea of optical detection as a

scattering problem and presented a particular approach to optical fingerprinting that

relied on detecting high spatial frequency signals scattered from a subwavelength

grating. While the proposed devices did not require hyperbolic dispersion, we found
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Figure 6.1: A frame from Big Bang Theory, season 3, episode 5, first aired on October
19, 2009. Source: CBS/Viacom

that anisotropic patterning was important in determining the spatial frequencies that

can be probed by a subwavelength structure.

As we conclude this thesis, it is natural to look ahead and comment briefly on

the current evolution of metamaterials in general, and hyperbolic metamaterials in

particular. In the introductory chapter, we presented a plot detailing the number

of metamaterials-related publications produced over the last 12 years. Re-examining

this plot, we see that the initial period of enthusiasm and excitement (and exponential

growth, as reflected by the number of publications) has now given way to an era that

some commentators have described as “sober assessment” [110]. In the process of this

assessment, it has been noted that the focus is shifting from thinking of metamaterials

as materials, to thinking of them primarily as devices [110]. This thesis has presented

a clear example of this evolution. Indeed, we spent the majority of the time discussing

devices enabled by the unusual properties of hyperbolic media.

In the coming years, we expect to see the emergence of metamaterial devices with

tunable, switchable, or nonlinear response. Hyperbolic metamaterials have every
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opportunity to be at the forefront of this research. After all, the ability to tailor

electromagnetic response of planar heterostructures which was used to demonstrate

the first all-semiconductor hyperbolic metamaterial [62] has become common in active

optoelectronic devices (such as quantum cascade lasers), as well as in photonic crystal

and plasmonic systems. In addition, we have only begun to scratch the surface in

finding applications of the density of states “hypersingularity”. Prospective research in

this area spans the range from designing materials for energy harvesting, to creating

optical analogs of exotic quantum gravity effects such as metric transitions [6].

Finally, we would like to express one more hope for hyperbolic metamaterials. In

October of 2009, 13.5 million Americans had a chance to see the “traditional” {ε <

0, µ < 0} metamaterials making a cameo appearance on the whiteboard belonging to

the characters of the hit prime time CBS show The Big Bang Theory (Fig. 6.1). We

firmly believe that hyperbolic metamaterials are equally as deserving to be mentioned

on network television, and will make every effort to lobby for their appearance.
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Appendix A

Reflection and transmission of dipole

radiation

A.1 Field of an electric dipole

A.1.1 Space domain

The electric field obeys

∇×∇×E − k2E = iωµj. (A.1)

On the other hand, the field (assuming the Lorenz gauge) also satisfies

E = iω

[
A+

1

k2
∇(∇ ·A)

]
, (A.2)

where k ≡ ω/c and the vector potential A satisfies

− (∇2 + k2)A = µj. (A.3)
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We define a dyadic Green’s function G as

∇×∇×G− k2G = 1δ(r − r′), (A.4)

where the vector operators are understood to act on each column of G separately.

Each ith column of G can be regarded as a field due to a point current source j =

(1/iωµ)êiδ(r− r′). It follows from Eq. (A.3) that the corresponding vector potential

obeys

− (∇2 + k2)A =
1

iω
êiδ(r − r′). (A.5)

The solution of this equation is A = 1
iω
g(r, r′)êi, where g(r, r′) is the well-known

scalar Green’s function for the Helmholtz equation:

− (∇2 + k2)g = δ(r − r′); (A.6)

g(r, r′) =
eik|r−r

′|

4π|r − r′|
. (A.7)

Plugging this result into Eq. (A.2) we obtain for the ith column of G

Gi =

(
êi +

1

k2
∇∂i

)
g(r − r′),

which gives for the final form of the dyadic Green’s function:

G =

(
1 +

1

k2
∇∇

)
g(r, r′). (A.8)

The electric field can now be found from the given source current as

E(r) = iωµ

∫
G(r, r′) · j(r′)dr′, (A.9)
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or [using Eq. (A.7)] as

E(r) = iωµ

(
1 +

1

k2
∇∇

)∫
eik|r−r

′|

4π|r − r′|
j(r′)dr′. (A.10)

We can use this formula to find the fields due to a Hertzian dipole. To avoid

introducing local field corrections [111, 112], the surrounding medium is taken to be

vacuum. Such dipole can be represented by a delta-function current source at a height

h above the z=0 plane, with m giving its strength and orientation:

j(r, t) = −iωm exp(−iωt)δ(r − hẑ). (A.11)

The electric field due to this dipole is given by

E(r) = iωµ

(
1 +

1

k2
∇∇

)(
−iωm eik|r−hẑ|

4π|r − hẑ|

)
. (A.12)

It is straightforward to compute the actual expression. For example, in the case

of vertically oriented dipole (m = mẑ) the electric field becomes

E(r) =
µmω2

4πk2
eikR

[(
k2

R
+
ik

R2
− 1

R3

)
ẑ +

(
− k

2

R3
− 3ik

R4
+

3

R5

)
(z − h)R

]
, (A.13)

where R = x x̂+ y ŷ + (z − h)ẑ and R ≡ |R|.

A.1.2 Spatial frequency domain

When considering a dipole in the presence of dielectric or conducting media, it is often

necessary to compute the reflected and transmitted fields, or to study the effects of

surface modes. Such calculations require decomposing the electric field into its spatial
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frequency spectrum. We will be using the following Fourier expansion:

E(r, ω) =

∫
E(k, ω) exp(ik · r)dk (A.14)

To get the dipole fields, we start with Eq. (A.12), writing it as

E(r, ω) =
ω2µ0

(ω/c)2

[
(ω/c)21 + ∇∇

]
m g(r, r′)|r′=hẑ . (A.15)

We can write

∇∇mg(r, r′) = ∇[∇ ·mg(r, r′)]

= ∇×∇× [mg(r, r′)]−m
[
δ(r − r′) + (ω/c)2g(r, r′)

]
,

where we used Eq. (A.6). With this substitution, Eq. (A.15) becomes

E(r, ω) =
ω2µ0

(ω/c)2
{−mδ(r − r′) + ∇×∇× [mg(r, r′)]}|r′=hẑ . (A.16)

In our Fourier representation, we have

δ(r − r′) =
1

(2π)3

∫
eik·(r−r

′
)dk.

g(r, r′) =
1

(2π)3

∫
eik·(r−r

′
)

k2 − (ω/c)2
dk

= − 1

(2π)3

∫
dk⊥e

ik⊥·r⊥
∫
dkz

ei(kz(z−h))

(ω/c)2 − k2
⊥ − k2

z

.

(A.17)

We can perform the integral

I0 ≡
∫
dkz

eikz(z−h)

(qz + kz)(qz − kz)
,
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where we defined q2
z := (ω/c)2 − k2

⊥. For z > h we close the contour in the upper

half-plane, in which case Cauchy’s Residue Theorem gives

I0 = −2πi
eiqz(z−h)

2qz

as the value of the integral. For z < h, we close the contour in the lower half-plane,

in which case we get

I0 = −2πi
e−iqz(z−h)

2qz
.

We therefore obtain

g(r, r′ = hẑ) =
i

(2π)2

∫
dk⊥e

ik⊥·r⊥ 1

2qz
eiqz |z−h|. (A.18)

To make it more convenient to work with the |z − h| term in our equations, we

define k1 := kxx̂+ kyŷ + qzsign(h− z)ẑ.

We can finally express Eq. (A.16) as an integral over the transverse wave vector

k⊥:

E =
ω2µ0

(ω/c)2(2π)2

∫
dk⊥e

ik⊥·r⊥
[
−mδ(z − h)− ik1 × k1 ×m

eiqz |z−h|

2qz

]
. (A.19)

In order to enable separate treatment of the two polarization components, we rewrite

this equation as

E =
1

ε0

1

(2π)2

∫
dk⊥e

ik⊥·r⊥
{
−mδ(z − h) + i [(m · p)p+ (m · s)s]

eiqz |z−h|

2qz

}
,

(A.20)

where p = k⊥ẑ + qzsign(h − z)k̂⊥ and s = (ẑ × k̂⊥)
√
k2
⊥ + q2

z = (ẑ × k̂⊥)
√
εµ(ω/c)

(in the case of isotropic medium) are vectors indicating P- and S-polarization.
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To make these equations more suitable for numerical computations it is advanta-

geous to rewrite the integral in polar coordinates and integrate over the angle variable.

In particular, we make the substitutions

k⊥ · r⊥ → kr cos(θ), dk⊥ → kdkdθ, k̂⊥ → Rz(θ) · r̂⊥, (A.21)

with Rz(θ) being the usual matrix of rotations around the z axis. Performing the θ

integral gives:

E =
1

ε0

1

(2π)2

∫
k dk

{
−J0(kr)mδ(z − h)+

+ i



− q̃2

zJ1(kr)(mx(x2−y2)+2xymy)
kr3 + xq̃2

zJ0(kr)(xmx+ymy)

r2 + ikxmz q̃zJ1(kr)
r

q̃2
zJ1(kr)(my(x2−y2)−2xymx)

kr3 + yq̃2
zJ0(kr)(xmx+ymy)

r2 + ikymz q̃zJ1(kr)
r

k2mzJ0(kr) + ikq̃zJ1(kr)(xmx+ymy)

r



+


J1(kr)(mx(x2−y2)+2xymy)

kr3 + yJ0(kr)(ymx−xmy)

r2

J1(kr)(my(y2−x2)+2xymx)
kr3 + xJ0(kr)(xmy−ymx)

r2

0


 e−iq̃z(z−h)

2|q̃z|

}
, (A.22)

where k =
√
k2
x + k2

y, r =
√
x2 + y2, q̃z := sign(h− z)

√
(ω/c)2 − k2, and the column

elements are the Cartesian x, y, z components of the field. Note that the first term in

the square brackets corresponds to P polarization, and the second term gives the S

polarization.

For the case of a vertically-oriented dipole (m = mẑ), the S polarization com-

ponent vanishes, and the p polarization component becomes substantially more

tractable:

E = − 1

ε0

im

(2π)2

∫
k2 dk

[
q̃z
r

(xx̂+ yŷ)iJ1(kr) + kJ0(kr)ẑ

]
e−iq̃z(z−h)

2|q̃z|
. (A.23)
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(Note that from this point onwards we will drop the delta function term at the location

of the dipole, since we are interested in fields elsewhere.)

Although the resulting expression appears considerably simpler, there remain cer-

tain difficulties when treating this integral numerically. First, the integrand is a

diverging oscillatory function in the plane of the dipole, z = h. It is therefore neces-

sary to compute the integral for z = h + ε and follow a limiting procedure as ε→ 0.

Second, the integrand oscillates rapidly for kr � 1; as a result, standard numerical

integration algorithms fail or suffer inaccuracies. This problem can be avoided with a

change of variables, effectively integrating over the quantity kr. In particular, using

I1(a, b) to denote the integral in Eq. (A.23) with integration limits a and b, we obtain

E =
1

ε0

im

(2π)2
[I1(0, ω/c) + I1(ω/c,∞)]

=
1

ε0

im

(2π)2

{
I1(0, ω/c) +

∫ ∞
ξ0

ξ2

r2
dξ ×

×

[
sign(h− z)

√
ξ2

0 − ξ2

r
(xx̂+ yŷ)iJ1(ξ) +

ξ

r
J0(ξ)ẑ

]
ei
√
ξ2
0−ξ2|z−h|/r√
ξ2

0 − ξ2

}
,

(A.24)

where ξ ≡ kr, ξ0 ≡ rω/c.

A.2 Reflection and transmission of dipole radiation

We now consider the problem of a dipole radiating above a homogeneous half-infinite

medium with the boundary at z = 0, as illustrated in Fig. A.1. If the plane wave

reflection and transmission coefficients at the boundary are known, with the help of

Eq. (A.20) we can compute the field everywhere in space. (This approach works not

just for a half-infinite medium, but in fact for any stratified planar structure with a

well-defined transfer function.) The exact expression is

130



x
y

zz

h

Dipole

Figure A.1: Geometry of the problem. The dipole is situated in vacuum in the
vicinity of a planar substrate, with z = 0 as the boundary.

E =
i

2(2π)2

∫
dk⊥e

ik⊥·r⊥ 1

ε0

(m · pi)
q

(1)
z

{[
pie

iq
(1)
z |z−h|+

+ rppre
iq

(1)
z (z+h)

]
θ(−z) + ε−1tppte

−iq(2p)
z zeiq

(1)hθ(z)
}
,

(A.25)

where q(1)
z and q(2p)

z denote the propagation vector in medium 1 and 2 respectively, ε

(assumed to be diagonal) is the dielectric tensor in medium 2, and θ(z) is the step

function. We have, furthermore,

pi =k⊥ẑ + q(1)
z sign(h− z)k̂⊥

pr =k⊥ẑ − q(1)
z k̂⊥

pt =k⊥ẑ + q(2p)
z k̂⊥.

(A.26)

A very similar expression can be written for the S polarization:

E =
i

2(2π)2

∫
dk⊥e

ik⊥·r⊥ 1

ε0

(m · si)
q

(1)
z

{[
sie

iq
(1)
z |z−h|+

+ rssre
iq

(1)
z (z+h)

]
θ(−z) + ε−1tsste

−iq(2s)
z zeiq

(1)hθ(z)
}
,

(A.27)

with si = sr = (ẑ × k̂⊥)

√
k2
⊥ + [q

(1)
z ]2; st = (ẑ × k̂⊥)

√
k2
⊥ + [q

(2s)
z ]2.
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Specifically, we would like to return to the case of a vertically-oriented dipole and

consider its field in the vicinity of a uniaxial anisotropic material. The dielectric

tensor of this material is

ε =


εx 0 0

0 εx 0

0 0 εz

 , (A.28)

and the propagation vectors in this material are

q(2p)
z =

√
εxµ

(ω
c

)2

− εx
εz
k2
⊥ (A.29)

q(2s)
z =

√
εxµ

(ω
c

)2

− k2
⊥. (A.30)

The reflection and transmission coefficients are given by the standard formulas:

rp =
ε

(2)
x q

(1)
z − ε(1)

x q
(2)
z

ε
(2)
x q

(1)
z + ε

(1)
x q

(2)
z

tp =
2ε

(1)
x q

(1)
z

ε
(2)
x q

(1)
z + ε

(1)
x q

(2)
z

(A.31)

As before, we can introduce polar coordinates and integrate over the angular

dimension. With this approach, we can write the electric field of a z-oriented dipole
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over an anisotropic half-space as

E =
1

ε0

im

2(2π)2

∫
k2 dk

1

q
(1)
z

1

r






q̃
(1)
z xiJ1(kr)

q̃
(1)
z yiJ1(kr)

krJ0(kr)

 e−iq̃z(z−h)+

+ rp


−q(1)

z xiJ1(kr)

−q(1)
z yiJ1(kr)

krJ0(kr)

 eiq
(1)
z (z+h)

 θ(−z)+

+ tp


q

(2p)
z xiJ1(kr)/εx

q
(2p)
z yiJ1(kr)/εx

krJ0(kr)/εz

 e−iq
(2p)
z zeiq

(1)hθ(z)



(A.32)

(as before, column vectors correspond to the Cartesian components of the field).

This integral can be readily computed numerically using methods described above.
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Appendix B

Dirac trick

In order to obtain a clear distinction between the behaviors of different systems we

consider, and to fully understand the effect of losses it is sometimes desirable to

perform computations while setting losses to zero. This presents problems when

equations of interest feature resonant denominators, as in the Eq. (3.19).

The situation is remedied by the observation that in the limit as losses approach

zero, the resonant peaks resemble delta functions, which greatly simplifies the inte-

gration procedure. This result (sometimes called the “Dirac trick”) is known as the

Sokhotsky-Weierstrass theorem, which, in its simple form, states:

lim
ε→0+

∫ b

a

f(x)

x± iε
dx = ∓iπf(0) + P

∫ b

a

f(x)

x
dx. (B.1)

Note that since all the quantities are assumed to be real, we trivially obtain the

imaginary part of the integral via delta-function integration. For more complex de-

nominators, such as the ones treated here, the theorem can be rewritten as

lim
ε→0+

∫ b

a

g1(x)

g2(x)± iε
dx = ∓iπ

∑
{x0}

g1(x0)

|g′2(x0)|
+ P

∫ b

a

g1(x)

g2(x)
dx, (B.2)
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where x0 are the roots of g2(x). Once again, the imaginary part of the integral is

obtained by an algebraic evaluation – provided the roots of g2(x) are known. For the

systems described above, these roots had to be determined numerically – however,

the problem of root finding is more easily tractable than that of numerical integra-

tion over very sharp resonances. Moreover, once these roots have been found, it is

straightforward to adapt numerical integration algorithms for considering small finite

losses, e.g. by changing variables to effectively “stretch” the integrand in the vicin-

ity of resonances, or by guiding singularity handlers in commercial computer algebra

packages.
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Appendix C

Transfer matrix formalism for the

slab lens problem

C.1 Transfer matrix analysis

A slab lens can be thought of as a generalization of an n-layer planar stack with n=1.

Let us consider a symmetric slab lens with TM-polarized plane waves impinging upon

it. We choose the propagation vector to be in the z direction, and assume material

parameters in region 1 and 3 are identical (ε1 = ε3; µ1 = µ3). Let the transverse

wave vector ~k‖ = kxx̂. Because ~k‖ is conserved across planar interfaces, we have

k
(1)
x = k

(2)
x = k

(3)
x := kx. For the z component of the wave vector we have

kz =

√
εµ
(ω
c

)2

− k2
x, (C.1)

thus we also write k(1)
z = k

(3)
z := k

(1)
z .

Because we are treating TM modes only here, we can define the fields in the

structure in terms of a single transverse component of the magnetic field. For the field

in the ithregion we write the field as a sum of forward- and backwards- propagating
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waves:

~B(i) = −ei(kxx+kyy)
(
a(i)eik

(i)
z z + b(i)e−ik

(i)
z z
)
x̂. (C.2)

In what follows we will often write a(i)and b(i) as a vector:

A(i) :=

 a(i)

b(i)

 . (C.3)

Let’s also assume that the system admits uniaxial anisotropy, where (εx = εy :=

ε‖) 6= εz, and similarly with µ. Note that for TM modes, only µ‖ plays a role, so in

the context of the TM mode discussion we will use µ := µ‖.

Given Eq. C.2 we can write the expression for the E-field from Maxwell’s equa-

tions:

−iωε(i) · ~E(i) =
−→
∇ ×

~B(i)

µ(i)
=

1

µ(i)


0

∂zB
(i)
x

−∂yB(i)
x

 = − i

µ(i)


0

k
(i)
z

(
a(i) − b(i)

)
−ky

(
a(i) + b(i)

)
 ;

~E(i) =
1

ω


0

k
(i)
z

(
a(i) − b(i)

)
/ε

(i)
y

−ky
(
a(i) + b(i)

)
/ε

(i)
z


~B(i)

µ(i)
.

At this point it becomes convenient to rewrite Eq. C.2 in regions (1) and (3) as

follows:

~B(1) = −ei(kxx+kyy)
(
ã(1)eik

(1)
z (z−z1) + b̃(1)e−ik

(1)
z (z−z1)

)
x̂, and

~B(3) = −ei(kxx+kyy)
(
ã(3)eik

(1)
z (z−z2) + b̃(3)e−ik

(1)
z (z−z2)

)
x̂,
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where z1and z2 are the coordinates of the first and the second interface of the slab

lens. We further define

ã
(2)
− = a(2)eik

(2)
z z1 and b̃(2)

− = b(2)e−ik
(2)
z z1 ;

ã
(2)
+ = a(2)eik

(2)
z z2 and b̃(2)

+ = b(2)e−ik
(2)
z z2 ,

as well as the propagation matrix

T
(2)
P (z2 − z1) =

 eik
(2)
z (z2−z1) 0

0 e−ik
(2)
z (z2−z1)

 .

(Note that using notation of Eq. C.3, we have Ã(2)
+ = T

(2)
P · Ã

(2)
− ).

Continuity of Ey and Bx/µ across the first interface give, respectively,

k(1)
z

(
ã(1) − b̃(1)

)
/ε(1)
y = k(2)

z

(
ã

(2)
− − b̃

(2)
−

)
/ε(2)
y and

ã(1) + b̃(1) = ã
(2)
− + b̃

(2)
− .

We can rewrite this as

1

2

 1 +K(12) 1−K(12)

1−K(12) 1 +K(12)


 ã(1)

b̃(1)

 =

 ã
(2)
−

b̃
(2)
−

 ,

where K(ij) := k
(i)
z ε

(j)
y /k

(j)
z ε

(i)
y . Denoting the interface matching matrix on the left-

hand side as T (12)
I , we write the above equation as

Ã
(2)
− = T

(12)
I · Ã(1).
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Similarly, we have

Ã(3) = T
(21)
I · Ã(2)

+ ,

and combining this with the propagation matrix we obtain

Ã(3) = T
(21)
I · T (2)

P (z2 − z1) · T (12)
I Ã(1).

Finally, let us choose to compare the fields a distance h from the slab interfaces. We

have

~B(1)(z1−h) = −ei(kxx+kyy)
(
ã(1)e−ik

(1)
z h + b̃(1)eik

(1)
z h
)
x̂ := −ei(kxx+kyy)

(
ã(o) + b̃(o)

)
x̂, and

~B(3)(z2 + h) = −ei(kxx+kyy)
(
ã(3)eik

(1)
z h + b̃(3)e−ik

(1)
z h
)
x̂ := −ei(kxx+kyy)

(
ã(i) + b̃(i)

)
x̂

– here (o) and (i) stand for object and image. We define the transfer matrix T between

the object and the image point as

Ã(i) = T
(1)
P (h) · T (21)

I · T (2)
P (z2 − z1) · T (12)

I · T (1)
P (h) · Ã(o) := T (d, ε,µ, h) · Ã(o),

where d = z2 − z1. Performing the matrix multiplications, we obtain the following

result:

T (d, ε,µ, h) =
1

2
sin
(
k(2)
z d
)
×

×

 ei2hk
(1)
z

[
2 cot

(
k

(2)
z d
)

+ i
(
ε1k

(2)
z

ε2k
(1)
z

+ ε2k
(1)
z

ε1k
(2)
z

)]
i
(
ε1k

(2)
z

ε2k
(1)
z

− ε2k
(1)
z

ε1k
(2)
z

)
−i
(
ε1k

(2)
z

ε2k
(1)
z

− ε2k
(1)
z

ε1k
(2)
z

)
e−i2hk

(1)
z

[
2 cot

(
k

(2)
z d
)
− i
(
ε1k

(2)
z

ε2k
(1)
z

+ ε2k
(1)
z

ε1k
(2)
z

)]
 .

We note that the determinant of the matrix is 1.

Reflection and transmission coefficients for the fields are defined as

r =
b̃(o)

ã(o)
= −T21

T22

and t =
ã(i)

ã(o)
=

detT

T22

=
1

T22

.
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When expressed as a function of transverse wave vector kx, the field transmission

coefficient t can be thought of as a spatial frequency transfer function. For high values

of kx (in particular, values so high that in the absense of losses k(i)
z becomes purely

imaginary and the wave becomes evanescent) it is convenient to define

k(i)
z = ik̃(i)

z , k̃
(i)
z ∈ R (for the lossless case).

(The definition is made largely for the sake of convenience; using Eq. C.4 as originally

written is just as valid – one simply needs to deal with many complex quantities.)

With this substitution, we have

t = e−2hk̃
(1)
z

[
cosh

(
k̃(2)
z d
)

+
1

2

(
ε1k̃

(2)
z

ε2k̃
(1)
z

+
ε2k̃

(1)
z

ε1k̃
(2)
z

)
sinh

(
k̃(2)
z d
)]−1

. (C.4)

In the case ε1 = µ1 = 1; ε2 = µ2 = −1 we get k̃(1)
z = k̃

(2)
z , and the transfer function

expressed as a function of spatial frequency becomes

t(kx) =
e−2hk̃

(1)
z

cosh
(
k̃

(1)
z d
)
− sinh

(
k̃

(1)
z d
) = e(d−2h)

√
k2
x−(ω/c)2

. (C.5)

C.2 Superlens and its limitations

By inspection of Eq. (C.5), we conclude that for h = d/2 we get t = 1 everywhere.

This is precisely the superlensing condition as described by Pendry [2]. More generally,

we use the identity

2 coth(x) = tanh
(x

2

)
+ coth

(x
2

)
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to write the transfer function as

t(kx) =

=e−2hk̃
(1)
z

{
1

2
sinh

(
k̃(2)
z d
)[(

tanh

(
k̃(2)
z

d

2

)
+
ε2k̃

(1)
z

ε1k̃
(2)
z

)
+

(
coth

(
k̃(2)
z

d

2

)
+
ε1k̃

(2)
z

ε2k̃
(1)
z

)]}−1

=e−2hk̃
(1)
z

{
1

2
sinh

(
k̃(2)
z d
)[(

tanh

(
k̃(2)
z

d

2

)
+
ε1k̃

(2)
z

ε2k̃
(1)
z

)
+

(
coth

(
k̃(2)
z

d

2

)
+
ε2k̃

(1)
z

ε1k̃
(2)
z

)]}−1

.

(C.6)

The transfer function has two poles: one where tanh
(
k̃

(2)
z

d
2

)
= − ε2k̃

(1)
z

ε1k̃
(2)
z

is satisfied,

and another where coth
(
k̃

(2)
z

d
2

)
= − ε2k̃

(1)
z

ε1k̃
(2)
z

is satisfied. It is important to note that

the first equality is exactly the dispersion relation for symmetric plasmons, while the

second one is the dispersion relation for antisymmetric plasmons. The peaks of the

transfer function, thus, are determined by the location of plasmon resonances. For a

perfect superlens, we see that both of the plasmon resonance poles move to +∞ in

spatial frequency.

What happens to the not-so-perfect superlens? We take ε1 = µ1 = 1, ε2 = −1+δε,

and expand the term in front of sinh in Eq. C.4 in powers of k−1
x and δε. Retaining

terms up to k−4
x and collecting the powers of δε, we get

t(kx) =
e−2hk̃

(1)
z

cosh
(
k̃

(2)
z d
)
−
[
1 + 1

2

(
(1+µ2)2

4k4
x

+ δε(1+µ2)
k2
x

+ δε2
)]

sinh
(
k̃

(2)
z d
)

' 1

1− 1
4

(
(1+µ2)2

4k4
x

+ δε(1+µ2)
k2
x

+ δε2
)(

e2dk̃
(2)
z − 1

) for h = d/2 (C.7)

Note that for µ2 = −1, δε = 0 we get back the usual t(kx) = 1 of the ideal

superlens. For µ2 = −1, δε 6= 0, we have a pole at kx = 1
2d

log 4
δε2
' 1

2d
(1− 2 log |δε|).

For larger values of kx exponential decay takes over. Taken another way, if we would

like to retain the passband of the transfer function up to a particular value kmax
x , the
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maximum allowed deviation from the ideal case is

|δε| = 2 exp(−dkmax
x ).

Note that this equation is valid for complex values of δε: when losses are present,

the spikes of the transfer function corresponding to real-ε poles get smoothed out,

however the transfer function still decays exponentially past the location of the poles.

This means that the superlens is exponentially sensitive to losses.

Suppose now that ε2 = −1, µ2 = 1, δε = 0 – an ideal “poor man’s” superlens.

What are its fundamental limitations? We find from the denominator of Eq. C.7

that having µ2 = 1, δε = 0 is approximately equivalent to having |δε| = 1/k2
x in the

µ2 = −1 case (the slight difference in k̃(2)
z between the two cases is immaterial). As

before, to find the cut-off frequency of this lens we need to determine the values of

kx for which 1
4k4
x

(
e2dkx − 1

)
� 1.

The general form of the curve reflects the fact that for small values of kx, the 1/k4
x

term dominates, while for larger values the growing exponent takes over. Furthermore,

can see that there are two regimes: for small enough values of d, the function becomes

1 in two places, resulting in poles in the transmission function Eq. C.7. After the

right-most pole, exponential decay would dominate the transfer function. The poles,

however, are not always present: for larger values of d, the function never crosses 1

and thus the poles never materialize. The general behavior of the function remains

the same, however: the denominator starts growing exponentially, and the transfer

function once again undergoes cutoff. To quantify the cut-off point in this case instead

of finding the right-most pole, one can examine e.g. the local minimum of the function,

which can serve as a good proxy for the point at which the exponent takes over the

1/k4
x term. The solutions for cut-off points can be obtained numerically.
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We find that the cut-off frequency becomes large for thin slabs – largely due to the

fact that for d/λ <≈ 0.16 the transfer function has poles corresponding to symmetric

plasmon polaritons, and the resonant frequency of the plasmon responsible for the

right-most pole becomes larger as the slab becomes thinner.
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